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Overview

Three Themes

- Not designing autonomous systems to interact
with humans increases costs

- At a system level, autonomy coupled with human
intelligence will remain superior to either on its
own

- Need to consider nominal and off-nominal
situations separately



Machine Intelligence

We appear to be at an exciting time with respect intelligent
machines (again).

* Four Related Areas of Development
1. Big Data - volume, velocity and variety
2. Deep Learning
3. Networked operations and cyber-physical systems
4

Moore’s Law (exponential growth, doubling of components on an integrated circuit
every two years): faster, bigger computers driving change with increasing velocity

- Stephen Hawking, Bill Gates and Elon Musk have all recently
warned about the potential dangers of Al.

« Also interesting time in terms of self-driving cars and

companies with robotic operations/factories like Amazon, Tesla
and Toyota

« Big Blue, Watson, Pokerbot
« Google DeepMind Al Division beats human at GO (Jan 2016)
* First Al investment software hits Wall St. (Feb 2016)



Manpower Reduction:
Start with the Human (Not the Technology)

The Autonomy Paradox

(Blackhurst, Gresham & Stone, 2011)

« Autonomy doesn’t get rid of
humans, it changes their roles

 DoD has shifted from Levels-of-
Automation to Cognitive Echelons

As machine intelligence advances, the The Littoral Combat Ship
need for better human interfaces

Built to be operated by 45 sailors
increases

Dr. Larry Shattuck, NPS (pg. 13-15)
http://human-factors.arc.nasa.gov/workshop/autonomy/download/presentations/Shaddock %20 .pdf



Recent Developments

UPDATED: Littoral Combat Ship USS Montgomery
Suffers Engineering Casualty, Fifth LCS Casualty
Within Last Year

By: Sam LaGrone
September 16, 2016 12:26 PM « Updated: September 16, 2016 10:52 PM

The Littoral Combat Ship

* New, highly autonomous
vehicle

In the end, the ship required 60
sailors, all E5 or above

e

US Navy Orders Engineering Stand Down, ... and they are still encountering
major issues

Retraining for LCS Crews

By: Christopher P. Cavas, September 5, 2016 (Phoro Creae: US Nowy,



Self—Drlvmg Cars

About 5 years in

Companies include: BMW, Bosch, Delphi, Ford,
GM, Google, Honda, Nissan, Mercedes-Benz,
Tesla, VW, Volvo/Uber, Apple

Vehicle responsible for own safety. Control
Center provides high-level goals when vehicle
requires assistance.

Vehicle control not handed back to human in
emergency (“The Nun or the Baby Scenario”)

Trained safety drivers in vehicles (Tesla and
Uber?)

Low cognitive demand activity (most of the time)
MB: vehicles like domesticated animals
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Car as Guardian: Assisted

Driving
Lane keeping
Tight or loose?

Blind-spot monitoring
Adaptive cruise control (speed & spacing)
Automated Emergency Breaking

Forward Collision Warning

Car as Chauffer: Self-Driving

Autosteering (Tesla); DrivePilot (MB)
: s S PO




Ladder of Vehicle Automation

(per SAE International)

Who steers,
accelerates
and

decelerates

Who monitors
the driving
environment

Who takes
control when
something
goes wrong

How much
driving,
overall, is
assisted or
automated

Human Driver Monitors Environment

0

No
Automation

The absence of any
assistive features

such as adaptive
cruise control.

N
Human driver

.

Human driver

N

Human driver

N

None

1

Driver
Assistance

Systems that help
drivers maintain
speed or stay in
lane but leave the
driver in control.

Human driver
ana "._\'(.:L"'n

.

Human driver

N

Human driver

o

Some driving

modes

2

Partial
Automation

The combination
of automatic speed
and steering con-
trol—for example,
cruise control and

lane keeping.

K.

System

A

Human driver

N

Human driver

o

Some driving
modes

System Monitors Environment

3

Conditional
Automation

Automated sys-
tems that drive and
monitor the envi-
ronment but rely
on a human driver
for backup.

Y.

System

Y.

System

N

Human driver

~

Some driving
modes

4

High
Automation

Automated systermns
that do every-
thing—no human
backup required—
but ondy in limited
arcumstances.

Y.

System

Y.

System

Y.

System

~
Some driving

moages

5

Full
Automation

The true electronic
chauffeur: retains
full vehicle control,
needs no human
backup and drives
in all conditions.

Y.

System

Y.

System

Y.

System

Y.

All driving modes



Stats

Self-driving cars: 1 critical disengage per 40,000 miles

Humans Drivers:
1.2 fatal accidents per 100,000,000 miles driven
99 injury accidents per 100,000,000 miles driven ~ 1 injury accident per 1,000,000 m

Most (x100) disengagements are on streets (v highway)

Disengagements where safety driver takes over dropping slower than
disengagements where software hands back control (x5)

Time from software hand-back to human control ~ 1min
Google & Nissan: ~ 1 disengage per 5,000 miles
Tesla; ~ 1 disengage per 3 miles



Tesla’'s 40% Decrease In

accidents after Autosteer

Install

Miles include
“Autopilot” on
and off

1.4

Crash Rate per Million Miles

0.0 ~

1.2 +

1.0 -

0.8 -

0.6 -

04 -

0.2

Before Autosteer After Autosteer

Figure 11. Crash Rates in MY 2014-16 Tesla Model S and 2016 Model X

vehicles Before and After Autosteer Installation.




Challenges to SDV

Software V&V
Human-systems integration
Graceful degradation

System-Level Approach

Can’t be piecemeal - e.g., Littoral Combat Ship

Transition of human roles from SMEs (drivers in this case), to autonomy
experts.

What will humans need to do in nominal and off-nominal situations
Control Centers for off-nominal situations

Nissan control center/
console pictures



Progress in Artificial Intelligence

PROGRESS

2005

2010

2015

Weak Al

Pattern analysis,
image recognition
(e.g., NLP, SDCs,
Go, Watson)

Strong Al

Adaptive problem
solving, reasoning,
generalizable
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Relative strengths of computer vs. human information processing

From Cummings, M.LL., " " IEEE Intelligent Systems, (2014) 29(5), p. 62-69.
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Relative strengths of computer vs. human information processing

Architecture based on autonomy performing all skill and rule-based roles, as well as most knowledge-based roles.
Manpower reduced by two orders of magnitude with remaining expert humans teaming with machine intelligence to
solve complex problem solving under uncertainty. Machine intelligence for airspace management evolves from the
outset to support teaming with small set of expert humans to support cooperative problem-solving.
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What aAre the Challenges of
Working with Autonomy?

« Lack of transparency about intent, state awareness,
risk/confidence posture, graceful degradation, etc.

« Part of the challenge is just the reverse though. Given
that the Autonomy does not know what the human is
trying to do, it is difficult for the system to know to
engage in ways that are useful.
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Toward Human-
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Path to Collaborative, Human-in-the-Loop Planning Systems

Mars Rovers
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Phoemx Assisted Analog Mission ISS
Science Interface Replanning Self-Scheduling Self-Scheduling

Phoenix Lander Playbook



idealised flowfield (after Gibson, 1950)



Using
Affordances

Application of Gibsons’
Ecological Psychology

« Alternatives to using

human central attention
resource

« A car more like a horse




Apple Research on Teaming

of IISS with Humans

« Characterizing calorie burn during swimming and using learning algorithms
to tune the functionality to individual differences

» Developed novel experimental hardware and tested on 700 swimmers
« To develop a feature on one app for the new iWatch



System-Level Design

Commands (
| » Aircraft
Automation

Aircraft State

Increasingly
Autonomous
System

\ System

\ Faults
Autonomy

Teaming eather

& Traffic

Decide v/

e
- ATC Clearances

From SECAT briefing package, Aponsonet al., 09/2016

Airspaceis a
complex system
and complexity will
only continue to
Increase

Humans are both
limiting and
enabling parts of
system (pilots have
to address
unexpected safety
issues on 20% if
flights™)

DoD - $3B on H/A
Teaming in FY17

*
From NTSB Asiana 214 Docket



The Economics of Human-Centered Automation

Purpose

Critical to shape the autonomy industry

* For lower costs, higher
efficiencies and overall
improved system

performance:

« Characterize nature of human roles
(skills, rules, knowledge, expertise)
and tasks (e.g., proportion of hard
and soft constraints)

« Wrap autonomy around remaining
human roles from the beginning

e.g., Apple v. Littoral Combat Ship

Total= $149M

Advancement of autonomous systems, and
identification of potential investments to advance or
initiate critical enabling technology development.

What's driving Autonomy S&T?

* Manpower efficiencies

reduce human footprint and personnel cost

* Rapid response and 24/7 presence

timely, persistent, enduring

+ Harsh environments

day, night, hot, cold, weather, rubble

* New mission requirements

increasing competence, new capabilities

+ Advanced medical applications

critical response, end-to-end critical care

+ Logistical support

reduce logistics burden

$3
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COIl Sub-Areas (SM)

U Human & Autonomous
Interaction and Collaboration

sMachine Perception
Reasoning, Inteligence

M Scalable Teaming of
Autonomous Systems

M Testing, Evaluation, V&V

Dr. Jon Bornstein, DoD Autonomy Roadmap Autonomy Community of Interest
http://www.defenseinnovationmarketplace.mil/resources/AutonomyCOI_NDIA _Briefing20150319 .pdf




Teaming of Human and Machine Intelligence

« Even as computers get very “intelligent”, it is very likely that the nature
of the their intelligence will be different than that of humans (unless they
become omniscient or we program them to function just like humans)

 Humans are particularly good at adaptive problem-solving and discovery,
areas where there has been little machine intelligence progress

« Successful efforts going forward will be those that wrap new machine
intelligence capabilities around human competencies in order to get the
most out of each

Goal: Design the human into the process. Focus on how

the system will communicate it’s state to the human so

that the human can help in un-anticipated situations, and
vice versa.

What data and how it is presented to each agent such that each can bring
its unique capabilities to bear on it.



Final Thoughts

 Humans will remain important components of complex
systems

« Use human adaptive expertise as much as possible

« Use human cognitive & perceptual system as much as
possible in interactions

* Robotics progressing faster than Al

 Be aware of areas where you don’t have big data
* Not all problems are associative in nature

 Don’t assume pattern association and search will solve all
problems



Thank you
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NASA Extreme Environments Mission Operations
(NEEMO): Underwater laboratory off of the coast of Key
Largo, Florida.

Crew at Splashdown

@ Daily Status: Mission Day 1

Pl K

For this mission, our plan execution tool is Playbook, which is developed by NASA Ames
Research Center and specifically designed for use by crew to support mission
operations, It is mobile, web-based, and designed to be flexible enough to work on a
tablet device or in a traditional web browser, Used as the primary mission operations
tool, Playbook allows controllers and crew to see the mission plan and schedule changes
in real-time or through fully simulated time-delay. New features under evaluation include
one that makes it very easy for the crew to collaboratively self-schedule flexible tasks,
create new tasks, add groups of tasks to the timeline and keep the ground informed as
they do 0. We have a number of objectives related to crew self-scheduling we will be
locking at, and crew feedback will continue to make this tool even more capable, There
is also a new feature giving the ability to search all messages in real time, to allow
mission control and the crew to easily refer back to past messages or to see all
messages in a related thread.

Playbook previously flew on ISS as an objective of the IRISS mission of Andreas
Mogensen in Sept., 2015. It will be flying again during Increment 50/51 as a technology
demonstration task list objective for Peggy Whitson under the name CAST, Crew
Autonomous Scheduling Test. You can view the high level mission timeline at:

hitps //ineemo nasaplaybook com.




International Space Station

CAST - Crew Autonomous Scheduling
Test:

B ° Playbook Check-Out by Scott Kelly on
. Station in August 2015.

« Astronaut Peggy Whitson trained on
Playbook in July 2016.

» Astronaut self-scheduling study on ISS on
Mission Increment 50/51 Nov 2016.

ISS Mission Control

« Three integrated planning
systems: Power, Attitude
Control and Crew Activity

« Crew activity includes ESA
JAXA and Payloads



