Vivian I. Schneider
University of Colorado Boulder

Kenneth W. Carlson
 University of Colorado Boulder

Carolyn J. Buck-Gengler
 University of Colorado Boulder

METHOD

- Subjects were given 72 messages, 12 of each of six lengths (one to six commands).
ommands)
Accuracy was scored in an all-or-none fashion on each trial. - 144 college undergraduates participated.

DESIGN

Between Subjects Variable
Modality Type: Hear, Read, Se
Presentation Number: Once (Single), Twice (Double)
Presentation Mode: Hear (H), Read (R), See (S)
Hear Hear (HH), Read Read (RR), See See (SS), Hear Read (HR) Hear See (HS) Read See (RS) Read Hear (RH), See Hear (SH), See Read (SR)
Within Subjects Variable
Message Length: 1 to 6 commands

RESULTS

Figure 1. A sample display showing movements for a message with 3 commands. Commands are seen in the Read resentation mode and heard in the Hear presentation mode, digits on the display here show required moves and are not seen by the subjects.

Figure 2: Symbols used for See presentation mode

RESULTS

Figure 4. Proportion of correct responses for the presentation modes involving a single modality (Hear, Reat See) as a function of number of presentations (single, double) and message length.

Figure 5. Proportion of correct responses for the presentation modes involving two presentations of the messages as a function of message length and either the modality of the firs presentation (top panel) or the modality of the second presentation (bottom panel).

Figure 3. Proportion of correct responses as a function of presentation mode, with the modes ordered in terms of increasing accuracy.

Note. All error bars in the figures are between-subjects tandard errors of the mean.

CONCLUSIONS
When all 12 presentation modes are considered, there wa significant effect of presentation mode, reflecting, in part, the fact that the presentation modes with only one presentation yielde especially low performance and performance was best for the modes involving both See and Read (See Read and Read See) or See duplicated (See See) (Figure 3).

For the presentation modes involving a single modality here was a significant effect of presentation number and a ignificant interaction of presentation number and message ength. Double presentations yielded higher accuracy than ingle presentations for the longer message lengths where performance was not at the ceiling (Figure 4).

For the presentation modes involving two presentations of the messages, there was a significant effect of the modality of the second presentation, with the overall ordering in agreemen with that proposed by the widespread claim (Read, Hear, See) The effect of the modality of the first presentation was not githough Rea was numerally better advan Hear (Figee

The widespread claim indicates that See Hear (and Hear See) is better than See alone and Hear alone, but the present results show th See Hear and Hear See were actually numerically lower than See See See Hear and Hear See were actually numerically lower than See and Hear Hear. The widespread claim does not control for the number of presentations, which had a large effect. Also, Hear Hear Because two presentations in a single modality was sometimes better than presentations in two different modalities, the present results only partially confirm the ordering in the widespread claim.

REFERENCES

Dale, E. (1969). Audio-visual methods in teaching (3rd ed.). NY: Dryden.

Healy, A. F., Schneider, V. I., McCormick, B., Fierman, D. M., BuckGengler, C. J., \& Barshi, I. (2013). Which modality is best for presenting navigation instructions? Journal of Applied Research in Memory and Cognition, 2, 192-199
chneider, V. I., Healy, A. F., \& Barshi, I. (2004). Effects of instruction modality and readback on accuracy in following navigation commands. Journal of Experimental Psychology Applied, 10, 245-257.

Schneider, V. I., Healy, A. F., Barshi, I., \& Kole, J. A. (2011). Following navigation instructions presented verbally or patially: Effects on training, retention, and transfer. Applied Cognitive Psychology 25, 53-67

AUTHOR NOTE

This work was supported in part by NASA Grant NNX14AB75A to the University of Colorado.

