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Abstract

This Paper under-estimates answers to the following question under various constraints: If a
geofencing algorithm uses a map projection to determine whether a position is inside/outside
a polygon region, how far outside/inside the polygon can the point be and the algorithm
determine that it is inside/outside (the opposite and therefore incorrect answer)? Geofencing
systems for unmanned aircraft systems (UAS) often model stay-in and stay-out regions
using 2D polygons with minimum and maximum altitudes. The vertices of the polygons
are typically input as latitude-longitude pairs, and the edges as paths between adjacent
vertices. There are numerous ways to generate these paths, resulting in numerous potential
locations for the edges of stay-in and stay-out regions. These paths may be geodesics on a
spherical model of the earth or geodesics on the WGS84 reference ellipsoid. In geofencing
applications that use map projections, these paths are inverse images of straight lines in the
projected plane. This projected plane may be a projection of a spherical earth model onto
a tangent plane, called an orthographic projection. Alternatively, it may be a projection
where the straight lines in the projected plane correspond to straight lines in the latitude-
longitude coordinate system, also called a Plate Carrée projection. This paper estimates
distances between different edge paths and an oracle path, which is a geodesic on either
the spherical earth or the WGS84 ellipsoidal earth. This paper therefore estimates how far
apart different edge paths can be rather than comparing their path lengths, which are not
considered. Rather, the comparision is between the actual locations of the edges between
vertices. For edges drawn using orthographic projections, this maximum distance increases
as the distance from the polygon vertices to the projection point increases. For edges drawn
using Plate Carrée projections, this maximum distance increases as the vertices become
further from the equator. Distances between geodesics on a spherical earth and a WGS84
ellipsoidal earth are also analyzed, using the WGS84 ellipsoid as the oracle. Bounds on the
2D distance between a straight line and a great circle path, in an orthographically projected
plane rather than on the surface of the earth, have been formally verified in the PVS theorem
prover, meaning that they are mathematically correct in the absence of floating point errors.
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1 Introduction

The Federal Aviation Administration recently released Part 107 of the Federal Aviation
Regulations, which presents policy for commercial use of small unmanned aircraft systems
(UAS). These regulations cover UAS weighing less than 55 pounds, operating within vi-
sual line-of-sight, and operating under 400 feet above ground level or within 400 feet of a
structure. The guidelines are designed to enable commercial use of UAS in non-segregated
airspace, the motivation being due, in part, to a dramatic increase in UAS traffic in recent
years. Ensuring that aircraft stay in approved operational areas can help mitigate the safety
concerns presented by this increase. One way this can be accomplished is by using a geofenc-
ing system, which can ensure that an aircraft stays inside stay-in regions (authorized safe
areas) and outside stay-out regions (registered or dangerous areas). NASA has developed
several systems to provide geofencing capability, including Safeguard [2] and ICAROUS [1].
Safeguard enforces stay-in and stay-out regions in a framework that is designed for (but
does not necessarily guarantee) reliability and dependability, through its ability to termi-
nate flight by discontinuing power to a UAS’s motor. ICAROUS is open-source and relies
on the NASA PolyCARP package [7] of algorithms for computations on polygons.

PolyCARP is a suite of algorithms that includes software implementations as well as
formal models for calculating containment and collision information for polygons. For ex-
ample, PolyCARP can be used to determine whether a given point is inside or outside of a
particular polygonal region. In the Safeguard and ICAROUS systems, stay-in and stay-out
regions are modeled using 2D polygons with minimum and maximum altitudes. The ver-
tices of the polygons are input as latitude-longitude pairs, and the edges as paths between
adjacent vertices. One problem with modeling regions this way is that it is not immediately
clear what is meant by the path between two adjacent vertices, since there is more than one
way to generate such a path over the nonlinear surface of the earth. It can be generated as
a geodesic on the surface of the earth, where the earth is modeled as either a perfect sphere
or an oblate ellipsoid. In many geofencing applications, the path between two polygon ver-
tices is the inverse image of a straight line in a map projection of the earth’s surface, such
as an orthographic or Plate Carrée projection. ICAROUS and Safeguard both use ortho-
graphic projections, which map latitude-longitude points canonically onto the sphere and
then project them onto a tangent plane. Map projections reduce the containment problem
to a 2D problem where standard polygon containment algorithms can be used, but due to
the nonzero curvature of the earth, they necessarily introduce distortion, and this paper
attempts to quantify the effect of this distortion on geofencing.

This paper presents upper bounds for the maximum distance between a polygon edge
path and the WGS84 ellipsoidal geodesic, which is used as an oracle, for several path gen-
eration methods, including great circles and straight lines from several different map pro-
jections. For edges drawn using orthographic projections, this maximum distance increases
as the distance between the polygon vertices and the projection point increases. For edges
drawn using Plate Carrée projections, this maximum distance increases distance between
the vertices and the equator increases. Distances between geodesics on a spherical earth
and the WGS84 ellipsoidal earth are calculated. Bounds on the 2D distance between a
straight line and a great circle path, in an orthographically projected plane rather than on
the surface of the earth, have been formally verified in the PVS theorem prover, meaning
that they are mathematically correct if executed with exact real arithmetic. The analysis in
this paper is intended to aid the design process for geofencing systems. In particular, it pro-
vides data useful in determining the maximum polygon size that can be used for geofencing
applications.

Sections 2 and 3 provide background on map projections, with a focus on orthographic,
Mercator, and Plate Carrée projections. Section 4 provides formally verified upper bounds
for the maximum distance between a great circle and the curve derived from a straight

1



line after an orthographic projection to a tangent plane is taken. These bounds have been
proved using SRI’s Prototype Verification System (PVS). Section 5 estimates the variations
in locations of polygon edges due to different map projections and spherical earth models.
Sections 6 and 7 discuss related work and conclusions.

2 Background

The earth can be approximated by a variety of spherical models, including a sphere of
equal surface area or volume to that of the earth. A more common choice is known as the
navigation sphere, defined as a sphere in which one minute of arc on a great circle is equal
to one nautical mile, or 1852 meters [3].

The shape of the earth, however, more closely resembles an oblate ellipsoid, i.e. an
ellipsoid of revolution attained by the rotation of an ellipse around its shorter axis. The
reference ellipsoid most commonly used in engineering applications is the WGS84 ellipsoid,
an ellipsoid for which one minute of longitude at the equator is equal to 1.0018 nautical
miles (approximately 1855 meters) [3]. WGS84 is also the reference ellipsoid used in GPS
navigation, and in most cases, is the oracle ellipsoid used to measure the accuracy of methods
for generating polygon edges. For these reasons, the navigation sphere and WGS84 ellipsoid
are the spheroids used in this paper. Polygon edges on the WGS84 ellipsoid are modeled as
geodesics using the formulas of Karney [5] via the Python components of the GeographicLib
package [6].

3 Map Projections

A map projection is a transformation of latitudinal and longitudinal points from the surface
of the earth onto points on a plane. Many UAS geofencing systems use map projections
to reduce the containment problem to a 2D problem where standard polygon containment
algorithms can be used. This includes the NASA systems Safeguard and ICAROUS.

Given the nonzero curvature of the earth’s surface, map projections necessarily introduce
distortion. Map projections can produce distortion of multiple properties, including angle,
area, bearing, distance, scale, and shape. However, map projections can often be constructed
to preserve at least one metric property, and maps are typically categorized by the extent
to which they preserve a given property. For this reason, there exist various types of map
projections, each with advantages depending on its intended use.

The Mercator projection, historically used for navigation, is a cylindrical, conformal
map projection that preserves rhumb lines, i.e. lines of constant bearing. However, it
overemphasizes areas far from the equator. See Figure 1. Following Snyder, a cylindrical
projection is one in which lines of longitude are represented as equidistant parallel lines, with
straight latitudinal lines intersecting the longitude lines at right angles. A map is conformal
if all angles are preserved locally [8].

The NASA geofencing systems Safeguard and ICAROUS use orthographic projections,
which map latitude-longitude points canonically onto the sphere and then project them onto
a tangent plane at some point p on the surface. An orthographic projection characterizes
exactly one hemisphere of the globe, centered at p, with the outline of the globe forming
a great circle on the plane. See Figure 2. In the classification of map projections, it is an
azimuthal, perspective projection. An azimuthal projection is one in which the direction from
a given central point to any other point is represented correctly. A perspective projection
is one in which straight lines are emitted either from a given point or from infinity through
the surface of the sphere onto a tangent plane [8]. Orthographic projections are chosen
for Safeguard and ICAROUS because they produce very small changes in relative locations
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Figure 1: A Mercator Projection

CC BY-SA 3.0 - image by Daniel R. Strebe - August 15, 2011 - https://commons.wikimedia.org/wiki/File:Mercator_projection_SW.jpg

for points close to the projection point. This statement is not made precise in this section
because it is, in part, the point of this paper, and is therefore discussed in later sections.

Figure 2: Image of a Polygon Under an Orthographic Projection

The trigonometric formulas for orthographic projections are as follows [9]. Let R be the
radius of the earth under a spherical model, and (φ0, λ0) be the latitude and longitude of the
projection point p on the sphere. Then for latitudes and longitudes (φ, λ), an orthographic
projection onto the (x, y) tangent plane is given by:

x = R cosφ sin(λ− λ0),

y = R(cosφ0 sinφ− sinφ0 cosφ cos(λ− λ0)).

To ensure that points on the opposite hemisphere are not plotted, latitudes outside the
range of the projection are eliminated by calculating the angular distance c from the point
of projection p. A point represented by a latitude-longitude pair (φ, λ) is not plotted if
cos(c) is negative:

cos(c) = sinφ0 sinφ+ cosφ0 cosφ cos(λ− λ0).
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The inverse formulas are given by:

λ = λ0 + arctan

(
x sin c

ρ cos c cosφ0 − y sin c sinφ0

)
,

φ = arcsin

(
cos c sinφ0 +

y sin c cosφ0

ρ

)
,

where ρ =
√
x2 + y2 and c = arcsin

ρ

R
.

In addition to Mercator and orthographic projections, this paper also considers Plate
Carrée projections, where points on the earth’s surface are simply mapped to their cor-
responding points on a scalar dilation of the latitude-longitude plane. This projection is
considered because it is the simplest map projection to implement and should have minimal
impact on geofencing for small polygons, a claim that is more precisely quantified in later
sections. The general formulas for a Plate Carrée projection are given by:

x = (λ− λ0),

y = (φ− φ0)

where (φ0, λ0) is the latitude-longitude of a point around which the projection has minimal
distortion. Often, the x coordinate is multiplied by cos(φ0), making the projection a more
general Equirectangular projection [8].

4 Formally Verified Upper Bounds

An Orthographic projection is sometimes used in geofencing applications because it mini-
mizes distortion near the projection point. This section presents formally verified bounds
on the distance between a polygon edge, calculated using using an orthographic projection,
and the great circle between the same vertices. The distance between these two paths is
computed in the orthographically projected plane. That is, the presented bounds are bounds
on the distance between two paths in the projected plane: (1) a straight line between two
projected vertices, and (2) the projected image of the great circle between those vertices.
The calculated bound, for an example edge, is shown in red in Figure 3. In that figure,
containment in the polygon region is computed by first orthographically projecting the four
vertices to the plane and then drawing the polygon that they form with straight lines as
sides. The polygon is shown in green in the orthographic plane, and its preimage is shown
in green on the surface of the sphere. The two regions are both shown in green to indicate
that they correspond to each other under the projection.

These bounds are therefore bounds on the distance between two curves in the 2D tangent
plane rather than on the surface of the sphere. This may be seen as a drawback of the proved
bounds, but it should be noted that the bounds presented in this section are expected to be
a very close approximation to the great circle distance between the corresponding paths on
the surface of the sphere. It is intended that they can be used, along with the numerically
computed bounds on edge location variations for orthographic projections, presented in
Section 5, to inform users of geofencing systems regarding the size of acceptable geofencing
polygons.

These bounds are formally specified and verified for a finite set of predefined distances
using the PVS theorem prover. The specification of the function sphere to 2D plane in
PVS is considered to be the formal definition of the orthographic projection algorithm.

Throughout this paper, bold-face letters denote 3D vectors unless otherwise noted.
Vector operations such as addition, subtraction, scalar multiplication, dot product, i.e.
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Figure 3: Distance, shown in red, between the orthographically projected image of the great circle (on the
sphere) and the straight line

s · v ≡ sxvx + syvy + szvz, and the norm of a vector, i.e. ‖s‖ ≡ √
s · s, are defined as in 3D

Euclidean geometry.
Given two points q1 and q2 on the surface of the sphere of radius R, the predicate

on chord? determines if a point c is on the chord that cuts through the earth between q1
and q2:

on chord?(q1, q2)(c) : bool ≡ ∃ t ∈ [0, 1] : c = q1 + t(q2 − q1).

Every point ĉ on the great circle between q1 and q2 is a constant multiple of some point
c on the chord between q1 and q2. In fact, it sits on the surface of the sphere directly above
c. The function lift to surface is defined that lifts the point c to the point ĉ on the
surface.

lift to surface(R ∈ R
+, c �= 0) : {ĉ : ‖ĉ‖ = R} ≡ R

‖c‖ · c

An orthographic projection onto a tangent plane can be defined in more than one way.
One method to define an orthographic projection is by using the formulas from Section 3,
which assumes that the input points are in spherical coordinates. The orthographic pro-
jection is defined in PVS as a function called sphere to 2D plane, which assumes that the
input points are in Euclidean coordinates, i.e. 3D vectors with norm R. The inputs to this
function are a projection point p at which the tangent plane is located, and a point near p
to be projected onto the tangent plane. This function first rotates the sphere so that the
projection point p is sent to the coordinates (R, 0, 0), and then projects the rotated points
onto the tangent plane at the point (R, 0, 0) by simply removing the x-coordinate. The
rotation matrix that accomplishes this rotation via matrix multiplication is given by⎛

⎝orthonormal to x(p)
orthonormal to y(p)
orthonormal to z(p)

⎞
⎠ ,
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where the three rows are orthonormal and the first row is a unit vector in the direction of
the projection point. After this rotation, the function projects onto its last two coordinates
and negates the value in the last coordinate. The complete function sphere to 2D plane is
defined below.

sphere to 2D plane(p)(ĉ) : v ∈ R
2 ≡

let ymult = orthonormal to y(p),

zmult = orthonormal to z(p)

in (ymult · ĉ, −zmult · ĉ)

The predicate dist valid?, defined below, depends on the following parameters:

• R - radius of earth

• const - distance endpoints of an edge are allowed to be from a common point (often a
projection point)

The predicate dist valid? is true when, for every pair q1 and q2 of input vectors in R
3

and every point c on the chord between them, the following conditions are all met:

• The point p is on the surface of the sphere of radius R.

• The points q1 and q2 are on the surface of the sphere of radius R and lie in the
hemisphere centered at p.

• The points q1 and q2 are each at most a distance const from p in the 3D Euclidean
norm distance (not the great circle distance).

If these conditions hold, the orthographically projected points sphere to 2D plane(p)(c)
and sphere to 2D plane(p)(lift to surface(R, c)) are within distance DIST of each other.
This statement can be interpreted as saying that, for all pairs of points within radius const
of the point p, the great circle path between these two points is no more than DIST away
from the chord between these points after being orthographically projected at p.

dist valid?((R, const,DIST) ∈ R
+, p) : bool ≡

‖p‖ = R and ∀(q1, q2, c �= 0) :

q1 · p > 0 and ‖q1‖ = R and

q2 · p > 0 and ‖q2‖ = R and

‖(q1 − p)‖ ≤ const and ‖(q2 − p)‖ ≤ const and

c �= 0 and on chord?(q1, q2)(c)

=⇒ ‖(sphere to 2D plane(p)(lift to surface(R, c))−
sphere to 2D plane(p)(c))‖ ≤ DIST

The predicate dist valid? has been proved in PVS to hold for a variety of values for
const and DIST. As expected, the length DIST for this which this predicate holds increases
significantly as const gets large. That is, the difference between the orthographically pro-
jected chord path and the orthographically projected great circle path between two points
increases as the distance between these points and the projection point increases. Figure 4
and Table 1 (see appendix) show the relationship between const and DIST.

Each bound in Figure 4 and Table 1 is proved as a lemma in PVS. For example, the
following lemma states that the orthographically projected image of the great circle path
is no more than 0.0001 meters from the straight line path when const is 1852 meters (1
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Figure 4: Formally proved maximum variation (meters in the projected plane) in path location between
orthographic projection path and great circle vs. distance of endpoints from projection point (nautical
miles)

nautical mile), meaning that the endpoints of the path are within 1 nautical mile of the
projection point.

sphere to 2D plane dist 1852: Lemma

let const = 1852, DIST = 0.0001

in ∀p : ‖p‖ = R =⇒ dist valid?(p, R, const, DIST)

The results above help to quantify the amount that polygon edge location variations can
be reduced by limiting the distance from vertices to the common projection point. Another
approach to control the edge location variation introduced by an orthographic projection
is to bound the length of each edge by a constant pairdist, in addition to also limiting
the distance from vertices to the projection point. The predicate dist valid edgebound?,
defined below, depends on the same two parameters as dist valid?, namely R and const,
as well as on the following parameter:

• pairdist - maximum distance that two endpoints of an edge are allowed to be from each
other.

The predicate dist valid edgebound? has the same conditions as dist valid?, as well as
the following additional condition:

• The points q1 and q2 are no more than a fixed distance pairdist from each other in
the 3D Euclidean norm distance (not the great circle distance).

If these conditions are met, then dist valid edgebound? is true if the orthographically
projected point sphere to 2D plane(p)(c) and the orthographically projected great cir-
cle point sphere to 2D plane(p)(lift to surface(R, c)) are within distance DIST of each
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other,

dist valid edgebound?((R, const,DIST, pairdist) ∈ R
+, p) : bool ≡

‖p‖ = R and ∀(q1, q2, c �= 0) :

q1 · p > 0 and ‖q1‖ = R,

q2 · p > 0 and ‖q2‖ = R,

‖(q1 − p)‖ ≤ const and ‖(q2 − p)‖ ≤ const,

‖(q1 − q2)‖ ≤ pairdist,

c �= 0 and on chord?(q1, q2)(c)

=⇒ ‖(sphere to 2D plane(p)(lift to surface(R, c))−
sphere to 2D plane(p)(c))‖ ≤ DIST.

This predicate has been proved in PVS to hold for the values const = 100 NM, pairdist = 15
NM, and DIST = 0.44 m. This means that the images under orthographic projection of
the great circle path and the straight line between two endpoints are less than 0.44 meters
apart when the endpoints of the path are within 15 NM of each other and 100 NM of the
projection point. This assumes a spherical model of the earth with radius 6370997 meters.

sphere to 2D plane dist 185200 27780: Lemma

let R = 6370997, const = 185200,DIST = 0.44, pairdist = 27780

in ∀p ∈ R
3 : ‖p‖ = R =⇒

dist valid edgebound?(p, R, const,DIST, pairdist)

For many geofencing applications, one meter of inaccuracy introduced by an orthographic
map projection is acceptable. The above lemma implies that two potential requirements on
such a system that may help mitigate the effects of the orthographic projection are that no
polygon vertex is more than 100 NM from the common projection point and that no edge
is more than 15 NM long.

5 Estimated Differences in Polygon Edge Locations for
Various Projections

This section under-estimates the answer to the following question, under various constraints:
If a geofencing algorithm uses a map projection to determine whether a position on the
WGS84 ellipsoid is inside a polygon region whose vertices are also points on the WGS84
ellipsoid, how far outside/inside the polygon can the point be and the algorithm determine
that it is inside/out (the opposite and therefore incorrect answer)? That is, this section
provides under-estimates for the variations in locations of polygon edges due to different
map projections and spherical earth models. The analysis in this section uses Python
implementations of orthographic, Mercator and Plate Carrée (Equirectangular) projections,
as well as geodesics on the sphere and theWGS84 ellipsoid. Given two endpoints of a polygon
edge as inputs, each of these implementations generates a path between the endpoints. This
section estimates the distance between each such path and the ellipsoidal geodesic path.
The WGS84 ellipsoid and the geodesic between edge endpoints (vertices) are therefore used
as an oracle of the “correct” location of each edge.

There are five path generating functions implemented in Python called Ortho, Merc,
Equi Rec, Great Circle, and WGS84 geo. Each of these five functions takes as inputs:

1. A latitude-longitude pair (latp, lonp) representing a projection point,
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Figure 5: Polygon region with sides given by a projection function (Ortho, Merc, or Equi Rec)

2. Two latitude-longitude pairs (lat1, lon1) and (lat2, lon2) representing endpoints of
a polygon edge, and

3. A scalar t in the closed interval [0, 1].

Each of these five functions returns a latitude-longitude pair. As the parameter tmoves from
0 to 1, each function can be seen as producing a sequence of latitude-longitude pairs that
move from the pair (lat1, lon1) to the pair (lat2, lon2). At t = 0, it returns (lat1, lon1),
and at t = 1, it returns (lat2, lon2). The Great Circle and WGS84 geo functions return
the latitude-longitude pairs of the geodesic paths on the sphere and ellipsoid, respectively.

Figure 5 shows that the functions Equi Rec, Merc, and Ortho compute the boundary
paths of the polygon in their respective projective planes. In that figure, the true polygon
is shown with a solid boundary whose curves are WGS84 geodesics, and the region whose
boundary is computed by these three projection functions is shown with a dotted boundary.
Figure 6 shows the true polygon (in green) on the surface of the WGS84 ellipsoid, with a
solid boundary. In that figure, as in Figure 5, the region with curves given by these three
projection functions is also shown with a dotted boundary. Given one of the corresponding
projections, the endpoints of a polygon edge are projected to a plane. The straight line
between the projected images of the endpoints determines whether a point near the edge is
either inside or outside. The functions Equi Rec, Merc, and Ortho, respectively, compute
the pre-image (before projection) of this straight line. They therefore compute the boundary
paths (as latitude-longitude pairs) of the collection of points that the containment algorithm
says are inside. Because they return latitude-longitude pairs, they can be viewed as paths
on the surface of the WGS84 ellipsoid.

This Section computes various distances between the paths Ortho, Merc, Equi Rec,
Great Circle, and WGS84 geo. A closeup of the paths on the surface of the WGS84 ellipsoid
in Figure 5 are shown in Figure 7. The great circle path given by Great Circle, which
returns latitude-longitude pairs and can therefore also be plotted on the surface of the
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Figure 6: Polygon region with WGS84 geodesic sides

WGS84 ellipsoid, is also shown in Figure 8. The distance between the paths given by
the WGS84 geodesic and the respective projection function is shown in red. The distance
between the great circle and the projection function is shown in blue. The distance between
the WGS84 geodesic and the great circle path is shown in green.

Figure 7: Closeup of two paths Figure 8: Closeup of three paths

Each of the four functions Great Circle, WGS84 geo, Equi Rec, and Merc uses standard,
well-known formulas to compute paths. The functions Great Circle and WGS84 geo both
use Python implementations of Karney’s direct and inverse formulas [5] which are called
directly from the GeographicLib package [6]. The Python implementation of Equi Rec uses
the formula defined in Section 3 for the Plate Carrée projection, and the implementation of
Merc uses standard formulas.

The other path-generating function, Ortho, is defined in terms of its associated PVS spec-
ifications. The calls to orthog project produce orthographic projections of (lat1, lon1)
and (lat2, lon2) from the navigation sphere, where (latp, lonp) is the point of projec-
tion. The call to orthog inverse produces the inverse image of the point (xu, yu) =
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(1− t) · (lat1, lon1) + t · (lat2, lon2) from the projected plane back to the sphere.

Ortho(latp, lonp, lat1, lon1, lat2, lon2, t) ≡
q1 plane = orthog project(R, latp, lonp, lat1, lon1)

q2 plane = orthog project(R, latp, lonp, lat2, lon2)

xu = (1− t) · q1 plane.x+ t · q2 plane.x

yu = (1− t) · q1 plane.y+ t · q2 plane.y

u plane projback = orthog inverse(R, latp, lonp, xu, yu)

return u plane projback

Note that the correctness of the data presented in Section 5 depends on two things,
namely the author’s Python implementations of the functions Ortho, Merc, and Equi Rec,
and the Python implementations of Karney’s formulas in the Geographiclib package [6].
In contrast, the correctness of the data presented in Section 4 depends only on one thing,
namely the PVS implementation of orthographic projections, and the numerical bounds are
formally proved in PVS.

The analyses in this section depends on the parameters R, const, and pardist, as defined
in Section 4. Each of the functions described above for generating an edge between polygon
vertices is compared with the WGS84 ellipsoidal geodesic using the following approach:

1. A grid of projection points (latp, lonp), where each point is a latitude-longitude pair,
is generated covering the surface of the earth. In this implementation, there are 555
projection points generated, consisting of 15 points for each of 37 different evenly
spaced latitudes.

2. A distance of const is designated from each projection point (latp, lonp). Only edges
with endpoints that are at distance const from (latp, lonp) are considered in this
approach.

3. For each projection point (latp, lonp), 60 pairs (lat1, lon1), (lat2, lon2) on the sur-
face of the WGS84 ellipsoid are randomly generated, with each point at an exact
distance const from (latp, lonp) as stated in Step 2. For Figures 14 and 15 and Ta-
bles 3 and 4, each pair is generated with a distance approximately pairdist from each
other. For the other tables and graphs, no such constraint is placed on the distance
between pairwise points.

4. The four points

Great Circle(latp, lonp, lat1, lon1, lat2, lon2, t),

Ortho(latp, lonp, lat1, lon1, lat2, lon2, t),

Merc(latp, lonp, lat1, lon1, lat2, lon2, t), and

Equi Rec(latp, lonp, lat1, lon1, lat2, lon2, t)

are computed on the WGS84 ellipsoid, and their WGS84 geodesic distance to the
point WGS84 geo(latp, lonp, lat1, lon1, lat2, lon2, t) is calculated. These four points
correspond to points on a great circle, as well as orthographic, Mercator, and Plate
Carrée projections. This calculation is done for 11 different evenly spaced values of t.

5. For each path function described above (Great Circle, Ortho, Merc, and Equi Rec),
the maximum of the distance calculated in step 4, over all pairs generated in step 3,
is calculated and is used as an estimate of the maximum distance from the geodesic
to the given path.
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Figure 9: Estimated distance (meters) of WGS84 geodesic path to great circle and orthographic projection
paths by latitude (radians) of projection point when each endpoint of the path is no more than 15NM from
the projection point

Outcomes of specific analyses are described below.

Figure 9 displays dependence on the latitude (of the projection point) of the distance
between the WGS84 ellipsoid geodesic and the path functions Great Circle (blue) and
Ortho (red), for const equals 15 nautical miles, meaning that the endpoints of the paths are
each a distance of 15 NM from the projection point. The figure represents path distances for
projection points at the prime meridian and a range of latitudes between south and north
poles. A fixed longitude was chosen because the difference in output is mathematically inde-
pendent of longitude. The results show that great circle paths and edges generated through
orthographic projections differ most from WGS84 geodesics at latitude π/4. Further, this
graph illustrates that for edges with endpoints no more than 15 NM from the projection
point, distances from great circle and orthographic projection paths to WGS84 geodesics
are of comparable magnitudes, except at the poles and equator.

Figure 10 displays a similar analysis for Mercator (green) and Plate Carrée (orange)
projections. It depicts dependence on the latitude of the projection point for the distance
between the WGS84 ellipsoid geodesic and the path functions Merc and Equi Rec, where
const is set to 15 NM, again meaning that the endpoints of the paths are each 15 NM
from the projection point. The figure shows that for latitudes far from the equator, the
Mercator and Plate Carrée projections produce edge paths at enormous distances from
WGS84 ellipsoid geodesics. This result suggests that making use of these projections for
geofencing far from the equator produces unreliable outcomes if polygons have large edges
(e.g. if both endpoints are more than 15 nautical miles from some common point).

The graphs discussed above emphasize errors for multiple points over a range of latitudes.
Figure 11 shows the distance to the WGS84 geodesic for two edges generated by the path
functions Great Circle (blue) and Ortho (red), respectively, where the parameter t for these
functions moves from 0 to 1. As expected, the distance to the geodesic is largest around
t = 1/2, the middle of the path between the endpoints. This graph shows this distance for
a single projection point p corresponding to the latitude-longitude pair (π4 ,

π
4 ) (a latitude-
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Figure 10: Estimated distance (meters) of WGS84 geodesic path to Mercator and Plate Carrée projection
paths by latitude (radians) of a point that is no more than 15NM from each endpoint of the path

Figure 11: Estimated distance (meters) of WGS84 geodesic path to great circle and orthographic projection
paths versus percentage along path (t ∈ [0, 1]) when each endpoint of the path is no more than 15NM from
the projection point

longitude pair) and a pair of endpoints 15 nautical miles away from the projection point.

Figure 12 is analogous to Figure 11, except that it displays the output for the functions
Merc and Equi Rec, corresponding to Mercator (green) and Plate Carrée (orange) projec-
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Figure 12: Estimated distance (meters) of WGS84 geodesic path to Mercator and Plate Carrée projection
paths versus percentage along path (t ∈ [0, 1]) when each endpoint of the path is no more than 15NM from
the projection point

tions. As in Figure 11, for Figure 12 the endpoints of the edge are located 15 nautical miles
away from the projection point p corresponding to the latitude-longitude pair (π4 ,

π
4 ).

Figure 13: Estimated distance (meters) of orthographic projection path to the great circle path versus
latitude (radians) of the projection point for increasing distances (NM) (shown in different colors) between
the endpoints and the projection point

One important aspect of Figures 9 through 12 is that they compute distances between
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paths with the WGS84 geodesics as the oracle. However, the PVS development described in
Section 4 bounds distances between the images of the path-generating functions Ortho and
Great Circle under an orthographic projection. As a complement to this work carried out
in PVS, Figure 13 illustrates the results of evaluating the distance between an orthographic
projection and a great circle on the surface of a sphere, where the great circle is the oracle,
using the functions Ortho and Great Circle. The figure shows the distance between these
function outputs for edges of increasing distance (const) from the projection point. The
smallest value of const, which is one nautical mile, results in almost zero difference between
the functions Ortho and Great Circle. The figure continues in multiples of 10 up to 100
nautical miles, in which the largest distance between paths of approximately 36 meters
occurs. As mentioned above, these values are taken over a range of latitudes and a fixed
longitude at the prime meridian.

Figure 14: Estimated distance of WGS84 geodesic path to great circle and orthographic projection paths
versus latitude (radians) of projection point with endpoints no more than 100NM from the projection point
and edges no more than 15NM long

Figures 9 through 13 place constraints on the maximum distance (named const) that each
endpoint of an edge can be from the projection point, but they place no other restrictions
on the length of the edge. The data in Figure 14 depends also on the parameter pairdist,
which is the maximum length of an edge. This figure displays the distance between paths
generated by the functions Ortho and Great Circle when the endpoint vertices (lat1, lon1)
and (lat2, lon2) are at a fixed distance pairdist = 15 NM from each other and a distance
of const = 100 NM from the projection point. The longitude of the projection point p
in Figure 14 is taken to be the prime meridian. Figure 14 suggests that an orthographic
projection still produces an edge that is within half a meter of the geodesic on the WGS84
ellipsoid, even if the vertices are 100 NM from the projection point, as long as the distance
between adjacent vertices is less than 15 NM. Tables 3 and 4 show estimated edge location
variation distances for orthographic and Plate Carrée projections, respectively, over a variety
of values of pairdist and const.

Figure 15 shows the distance to the WGS84 geodesic for a single example pair of end-
points near a common projection point. In this example, the edge endpoints are pairdist = 15
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Figure 15: Estimated distance (meters) of WGS84 geodesic path to great circle and orthographic projection
paths versus percentage along path (t ∈ [0, 1]) when each endpoint of the path is no more than 100NM from
the projection point and the path is approximately 15NM long

NM apart. Paths are generated by the functions Great Circle and Ortho. This graph shows
this distance to the geodesic as the percentage along each path increases. The projection
point used has latitude-longitude coordinates given by the pair (π4 ,

π
4 ), and the endpoints

are approximately 100 NM apart.

Table 2 in the Appendix shows the distance between the orthographic projection path
function Ortho and the functions Great Circle and WGS84 geo at the midpoints of the
paths. The distance is measured on the surface of the WGS84 ellipsoid using a geodesic.

6 Related Work

The study of the effects of map projections on UAS geofencing is not new. In their pa-
per entitled Towards a generic and modular geofencing strategy for civilian UAVs, authors
Gurriet and Ciarletta discuss the distance between an ellipsoidal geodesic and straight lines
on Mercator and Equirectangular projections. For their geofencing algorithm, the Mercator
projection was taken to be the projection of choice due to its continued prominence [4]. One
difference between their work and this paper is that they do not provide explicit estimates
of bounds intended to be valid for all inputs on the earth’s surface. In contrast, one purpose
of the current paper is to provide esimates of such bounds so that readers can choose ap-
propriate constraints on geofence sizes, depending on their position uncertainty tolerances.
Finally, Gurriet and Ciarletta depend on Mercator projections, while the analysis carried
out in the previous section is focused more on orthographic projections.

The professional paper entitled Map Projections - A Working Manual, by John P. Snyder
of the United States Geological Survey [9], is an excellent resource on map projections. In
addition to descriptions of most commonly used projections, it includes data on various
metrics related to distortions introduced by map projections.
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7 Conclusion

This paper estimates location variations in the sides of geofencing polygons induced by map
projections. There are multiple paths between two polygon vertices on the surface of the
earth, including great circles, WGS84 ellipsoid geodesics, and paths generated by straight
lines after a map projection has taken place. This paper estimates how far apart these paths
can be. Their path lengths are not compared. Rather, the comparision is between the actual
locations of the edges between vertices.

This paper presents formally verified upper bounds for the distance between a great
circle path between vertices and the curve derived from a straight line path between the
images of the vertices after an orthographic projection to a tangent plane is taken. These
bounds have been verified with PVS for a few specific scenarios, such as when the vertices
are each within 15 nautical miles of the projection point. The proved bounds are distances
in the projected plane, rather than on the surface of the earth. For vertices with distances
less than 30 nautical miles from the projection point, the distances between great circle
paths and straight lines in the projected plane are less than one meter, and for vertices
less than 5 nautical miles from the projection point, the variation is negligible (< 0.004
meters). This paper also presents Python-generated data on the location variations of sides
of polygons. Multiple edge-generation methods are examined, including great circles, ortho-
graphic projections, Mercator projections, and Plate Carrée Equirectangular projections.
This data is calculated using available Python packages for the projections and great circle
functions, and its correctness therefore depends on the correctness of those available pack-
ages, in particular the GeographicLib package [6]. The bounds generated in Python are
estimates, and in particular, they have not been formally proved in PVS in the sense of the
bounds mentioned above. As mentioned in Section 4, one meter of inaccuracy introduced by
an orthographic map projection is acceptable for many geofencing applications. Given this,
two potential requirements on such a system that may help mitigate the distortion effects
of the orthographic projection are that no polygon vertex is more than 100 NM from the
common projection point and that no edge is more than 15 NM long.
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8 Appendix: Tables

PVS Upper Bounds for Difference Between
Projected Image of Great Circle and Chord Paths
const (nautical miles)
- i.e. max distance
of endpoints to projec-
tion point

DIST (meters) -
i.e. edge location
variation

1 0.0001
2 0.0003
3 0.0009
4 0.002
5 0.004
6 0.007
7 0.011
8 0.016
9 0.022
10 0.031
11 0.041
12 0.053
13 0.067
14 0.083
15 0.11
20 0.25
25 0.49
30 0.83
35 1.3
40 1.95
45 2.85
50 3.79
60 6.51
70 10.45
80 15.45
90 22
100 30.5

Table 1: PVS Proved Maximum Euclidean 2D Distance Between Straight Line in Orthographic Projection
Plane and Projected Image of the Great Circle
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Python Estimates for Difference
Between Orthographic Projection and

Great Circle Paths on the Sphere
const - i.e. max dis-
tance (nautical miles)
of endpoints to projec-
tion point

Distance (meters)
of Path from Or-
thog. Projection
to Great Circle

Distance (meters)
of Path from Or-
thog. Projection
to WGS84 Ellip-
soid Geodesic

10 0.0303 0.2584
15 0.1021 0.5814
20 0.2420 1.0336
25 0.4727 1.6148
30 0.8168 2.3259
35 1.2971 3.1659
40 1.9362 4.1350
45 2.7569 5.2351
50 3.7818 6.5289
60 6.5350 9.8685
70 10.3775 14.3656
80 15.4910 20.2109
90 22.0570 27.5935
100 30.2574 36.7027

Table 2: Estimated Distance of Path from Othographic Projection to the Great Circle and WGS84 Ellipsoid
Geodesic Paths
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Python Estimates for Difference Between Orthographic Projection and WGS84
Geodesic Paths for Fixed Polygon Edge Length pairdist and

Max Distance of Endpoints to Projection Point const
pairdist

0.25NM 0.5NM 1NM 2NM 5NM 10NM 15NM 25NM 50NM 100NM

co
ns
t

1NM 4.04 e-5m 0.00016m 0.0006m

5NM 0.00016m 0.00066m 0.0026m 0.0166m

10NM 0.00069m 0.0027m 0.017m 0.068m 0.149m

25NM 0.0033m 0.0207m 0.0823m 0.184m 0.495m

50NM 0.0306m 0.122m 0.273m 0.75m 2.77m

75NM 0.168m 0.377m 1.042m 4.013m 13.32m

100NM 0.22m 0.487m 1.348m 5.27m 19.115m

Table 3: Estimated Distance of Path from Orthographic Projection and WGS84 Ellipsoid Geodesic, by
Distance const of the Endpoints to the Projection Point

Python Estimates for Difference Between Plate Carrée Projection and
WGS84 Geodesic Paths for Fixed Polygon Edge Length pairdist and

Max Distance of Endpoints to Projection Point const
pairdist

0.25NM 0.5NM 1NM 2NM 5NM 10NM 15NM 25NM

co
n
st

1NM 0.0084m 0.034m 0.137m

5NM 0.035m 0.137m 0.547m 3.38m

10NM 0.138m 0.543m 3.382m 13.55m 30.41m

25NM 0.55m 3.4m 13.69m 30.851m 85m

50NM 3.46m 13.8m 31.05m 86.37m

75NM 14m 31.54m 87.98m

100NM 14.21m 31.96m 88.9m

Table 4: Estimated Distance of Path from Plate-Carrée Projection to WGS84 Ellipsoid Geodesic, by Distance
const of Endpoints to a Common Point
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