

# NASA

#### Introduction

## GHAPS is a Mission to Launch a Reusable, 1-M Balloon Based Telescope to Address the Needs of Planetary Science

#### **Design Cycles Led by GRC / MSFC Taught Us:**

- 1. Unique Challenges for Balloon Based Optical Telescopes are:
  - Combination of: Wide Thermal Range, Gravity, Lightweight
- 2. Design / Analysis Indicate that Design Solutions Can Be Found
  - Small Portion of the Overall WFE
- 3. Stability / Environment Demands Focus Changes on Float
  - Creates Requirements for WFS / WFC
- 4. Tools for Integrated Analysis
  - Elusive and "Home Grown"



Planetary Science that is Well Suited for Balloon Missions

## **SCIENCE INSPIRATION**



## Planetary Science + Balloon Telescopes

- Balloon- based telescopes offer "means of studying planetary bodies at wavelengths inaccessible from the ground" – 2013 Planetary Science Decadal Report
- NASA is currently in the demonstration phase of super-pressure balloons – offering diurnal cycle missions up to 100 days
- Reusable balloon platforms with 100 day missions provide planetary science observations at cadences prohibitive for other assets.
- Path Finding Missions Included: BOPPS and BRRISON
- Workshop Science Target Outputs: Venus, giant planets, icy satellites, and small bodies (e.g. KBO)
- Suggested Observations: Atmospheric composition / dynamics, surface composition, orbital mechanics of small bodies

J. Dankovich (et al.) "Planetary Balloon-Based Science Platform Evaluation and Program Implementation" NASA/TM-2016-218870







#### **Observatories Features**

High Spatial Resolution: 0.1 arcsec to 0.2 arcsec Broadband: UV – IR (300 nm to 5 um)
Small Observing Field of View: 60 arcsec to 100 arcsec



Aperture: 1-m (for Resolution)

WFE: Diffraction Limited at 650 nm

Temperature: "Cold" for Spectroscopy

Prescription: Cassegrain / R-C for Small FoV

Instruments: Spectrometer & Imaging



## **GHAPS Observatory**









**Gravity, Thermal, Mass** 

## **UNIQUE DESIGN CHALLENGES**



#### Start with Mass...



- 40 kg in the Facesheet
- Approx. 25% Mass of Solid Mirror

- Begin with Mass Allocation and Areal Density
- Areal Density = 100 kg/sq-m
  - Mass = 78 kg
  - Area = 0.78 sq-m
- Why So Heavy?
  - Gravity and Thermal

STO Flew with 0.8 m Primary @ 50 kg Areal Density: 100 kg/sq-m\*



## **How Do Gravity and Thermal Drive a Solution?**

### Gravity

- Elevation Angle Causes Deflection / Surface Errors
- Requires Extensive Support System Like Ground Based Telescope
  - Whiffle Tree + Tangent Bars

#### **Keck Mirror Support**



#### **TMT Mirror Support**





### **Thermal Environment**

Telescope Sensitivity (OTA WFE Budget = 26.6 nm RMS)

|             | Focus          | Decenter          | Tilt               |
|-------------|----------------|-------------------|--------------------|
| Sensitivity | 5 um / 26.6 nm | > 100 um/ 26.6 nm | > 200 ur / 26.6 nm |

- Environment on Float: + 30 C to -60 C
  - Athermalize to 5 um / 2.5 m over 90 C

$$\frac{\delta L}{L} = \epsilon = \alpha \cdot \Delta T \to \alpha = \frac{\epsilon}{\Delta T} = 0.022 \ ppm/C$$

- 1. Very Low Expansion Material
- 2. Great Athermal Design
- 3. Low Gradients
- 4. Good CTE Uniformity

Telescope Needs
Focus Control?





## **Total Mass Budget**

### **Standard Balloon**

- Mission Duration
  - 1.5 days to 30 days
- Lift Capacity
  - +2900 kg
- Day / Night Locations
  - Antarctica = Day @ 10 − 30 d
  - Domestic = Day / Night @ 1.5 d

## **Super Pressure Balloon**

- Mission Duration
  - 100 days
- Lift Capacity
  - +2500 kg
- Day / Night Locations
  - New Zealand @ + 90 d







Balloon Type / Site has Impact on: Wavelength, Temperature, Duration



Thermal Stability Demands Changes to Focus on Float Implying WFS / WFC

# NEED FOR FOCUS / COMA CONTROL



## Refocus Still Needed After Complex Athermalization

- Low Thermal Expansion Materials
  - Constructed w/Zerodur + CFRC
- Moderate Thermal Expansion in M1 Support
  - Whiffle Tree Includes Invar and Titanium
- High Thermal Expansion in COTS Hexapod
  - M2 Actuation Includes Aluminum
- Even With Athermal Design...BFL Changes
  - $-\Delta BFL / dt = 1 um / hr to 40 um / hr$











### **Wavefront Sense / Control**

### **Wavefront Sensing**

- Modified COTS Shearing Interferometer (Phasics)
- SCMOS Sensor w/Std Optics
- Few Sample Points
  - 40 x 40
  - 20 x 20
- Repeatability of 5 nm RMS Possible with Magnitude 7 or Less
  - Driven by Putting Wavefront Over as Few Pixels as Possible





#### **Actuated M2**

- Baseline Solution
  - Heated 6 DoF (Hexapod)
- Alternate Solution
  - Tip / Tilt / Piston Mechanism
  - 3 DoF







HST: (x6) DoF

Spitzer: (x1) DoF



**WFE Budget Not Dominated by Analysis** 

## **DESIGN / ANALYSIS**



## **Telescope WFE Budget**





## **Key Components for STOP Analysis**

## **Thermal**

- CTE Uniformity / When M1 Cools, CTE Uniformity Affects Surface Figure
- Thermal Distortion / Non-Ideal Support Transfers Stress to Mirror at Temperature

## Gravity

 Stiffness / Elevation Changes Result in Mirror Surface Figure Changes

## **Drift**

 Thermal Changes Between Refocus / Realign Operations Cause WFE



## **M1 CTE Non-Uniformity**

- Published Example fo Zerodur CTE Distribution
  - Synthesize Distributions with Similar Spatial Frequencies
- Run Thermo-Elastic Models on M1
  - Determine Ensemble WFE from CTE Non-Uniformity
- WFE = 0.25 nm WFE RMS / deg C











### **M1 Thermal Gradients**

- Thermal Gradients for Varied by Mission Locations / Flights
  - Ft Sumner (~1 day)
    - Environment Changes Faster than the Thermal Time Constant
  - New Zealand; Antarctica
    - Quasi-Equilibrium Achieved (~2 days) Prior to Observation







### **M1 SFE Over Elevation**

- Orientation Changes Loads
- Polished for 37 deg
  - Residual Errs at Other Elevations
- Focus / Coma
   Assumed Correctable









## Mirror Figured at $\theta_{\text{elevation}}$ = 37 Deg







S/W "Glue" and Management

**STOP** 



## **Architecture to Answer Key Questions**

## Science Simulation

#### Blackbody Radiation

Mirror Temperatures

#### PSF

•Image Acuity

#### Long Term Stability

- Long Exposures
- •Impact of Slewing to Refocus

## System Model

**Pointing** 

Jitter

#### PSF

- •WFE
- Deterministic
- Stochastic

## **Scenarios**

Simplified Boundary Conditions

Design Reference Mission

## **Tools**

Nastran

Zemax

Thermal Desktop

Matlab / Python

Visual Studio / C#



### **Data / Context**

#### Models

- Nastran
  - Static Model (x3) / Elevation, Thermal
  - Dynamic Model (x2) / +100 modes
- Thermal Desktop
  - (x2) Configurations
  - (x5) Scenarios
  - (x100) Transient Temperature Outputs for Nastran Model

Optical Model (x1)

Robust Process to Support Iteration

A Lot of Point-Click

Top Level Outputs
Not Supported by
S/W

**Deterministic and** 

**Stochastic Scenarios** 

10's – 100's Files



## Hierarchical Object Oriented S/W with API Interface





## Hierarchical Object Oriented S/W with API Interface





## **Automation through OOP with API**





## **Classes to GHAPS / STOP**





## Objects Interact with Data to Import and Analyze





## Telescope Object Analyzes w/API to Get System Level Answers





## **Design Reference Mission to Science Eval**





- For Structure
   PSF, Mirror Temperatures



# NASA

### What Did This Enable?

#### Verification

Verification through API and Cross Correlation with Different S/W

### Automatic Export of Data to Scientists

FITS Files for WFE and PSF to Verify Science Instrument Sims

#### Rapid Assessment of New Scenarios

(x3) Flights; (x100) Thermal Conditions; (x2) Thermal Configurations;
 (x7) Elevations

#### Evaluation for CONOPS

- WFS / WFC: Range of Travel; Need for Corrections; Drift on Float
- Jitter / Pointing: FSM in Instrument; Fine Steering in Instrument

#### Science Instrument Interface

- Pointing of Telescope vs. Pointing of Science Instrument
- Opto-Mechanical Interface to Bench; Requirements for Call

#### Monte Carlo Simulation

- Incorporate Stochastic Errors in M1 Fabrication (100's of Cases)
- Identify Sensitivities, Requirements
- Feedback to Scientists on Consequences of Requirements



#### **Final Notes**

- Planetary Science Still Has a Need for an Observatory
  - Decadal Science Questions Remain Unanswered with Existing Assets
- Balloon Based Telescope Platform
  - Addresses Many Science Question
- Design Solutions Can Be Found
  - Challenging Environment Addressed with GHAPS as One Solution
- STOP Analysis Still a Complex Endeavor
  - Requires Several Disciplines Working Together
  - Software Tools not Widely Available