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NASA envisions a future Air Traffic Management system that allows safe, efficient 
growth in global operations, enabled by increasing levels of automation and autonomy. In a 
safety-critical system, the introduction of increasing automation and autonomy has to be 
done in stages, making human-system integrated concepts critical in the foreseeable future. 
One example where this is relevant is for tools that generate more efficient flight routings or 
reroute advisories. If these routes are not operationally acceptable, they will be rejected by 
human operators, and the associated benefits will not be realized. Operational acceptance is 
therefore required to enable the increased efficiency and reduced workload benefits 
associated with these tools. In this paper, the authors develop a predictor of operational 
acceptability for reroute advisories. Such a capability has applications in tools that identify 
more efficient routings around weather and congestion and that better meet airline 
preferences. The capability is based on applying data mining techniques to flight plan 
amendment data reported by the Federal Aviation Administration and data on requested 
reroutes collected from a field trial of the NASA developed Dynamic Weather Routes tool, 
which advised efficient route changes to American Airlines dispatchers in 2014. 10-Fold 
cross validation was used for feature, model and parameter selection, while nested cross 
validation was used to validate the model. The model performed well in predicting controller 
acceptance or rejection of a route change as indicated by chosen performance metrics. 
Features identified as relevant to controller acceptance included the historical usage of the 
advised route, the location of the maneuver start point relative to the boundaries of the 
airspace sector containing the maneuver start (the maneuver start sector), the reroute 
deviation from the original flight plan, and the demand level in the maneuver start sector. A 
random forest with forty trees was the best performing of the five models evaluated in this 
paper. 

I. Introduction 
HREE of six strategic thrusts outlined by the National Aeronautics and Space Administration (NASA) 
Aeronautics Research Mission Directorate (ARMD) in the NASA Aeronautics Strategic Implementation Plan1 

are safe, efficient growth in global operations (Thrust 1); real-time system-wide safety assurance (Thrust 5); and 
assured autonomy for aviation transformation (Thrust 6). In Air Traffic Management (ATM) particularly, as 
technologies move to more integrated systems, the three strategic thrusts described above may converge, enabling 
autonomic system concepts that increase capacity and efficiency while maintaining or enhancing system safety.1  

In a safety-critical system such as ATM, system evolution and the introduction of increasing autonomy has to be 
done in stages. Technology is not yet at a point where a fully autonomous ATM system can be deployed. Hence 
human-system integrated concepts, with progressively increasing autonomy as the available technology develops 
and is introduced, will be critical in the foreseeable future. It is therefore essential for the success of future 
automation that automated support systems work effectively in the existing ATM system, and in particular, with the 
humans that operate in it. This requires that automation be designed to be understandable and acceptable to airline 
and air traffic personnel, including dispatchers, air traffic controllers and traffic managers. In the near term, 
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automation will primarily provide decision support to these human users rather than act autonomously. Lessons 
learned from the harmonious introduction of automation can also inform the design of future autonomous systems. 

For automation tools to be successfully implemented in a mixed human-automation environment, there is a need 
to ensure that the outputs of the tools, including decision support tools, have high operational acceptance, i.e., have a 
high probability of being implemented by controllers. One example is for tools that generate alternative flight 
routings or reroute advisories. If the reroute advisories generated by decision support tools were more often 
operationally acceptable, a higher number of them would be accepted and implemented by controllers, increasing 
efficiency. Increased operational acceptance would also reduce the workload burden of the tool on the controller per 
requested route, because fewer route modifications would have to be made before a Center route amendment (a 
flight plan amendment entered into the host computer by an Air Route Traffic Control Center controller) could be 
implemented. Ultimately it could also free up controller time to work on other problems, with further benefits to the 
system. 

One application for which the generation of operationally acceptable routings is particularly important is 
Trajectory Based Operations (TBO). TBO is an air traffic management paradigm that will enable all vehicle classes, 
including manned and unmanned systems, with energy-efficient, user-negotiated routing by sharing 4-dimensional 
trajectory information between decision-makers and their supporting automation so that aircraft and National 
Airspace System (NAS) resources are flexibly managed based on reliable predictions of future states. While some of 
this coordination will be done at the level of traffic flows, flights must ultimately be allocated specific 4-dimensional 
trajectories, which will be updated dynamically as conditions change. For success of the concept in a mixed human-
automation environment, these routings should be generated in such a way as to maximize operational acceptance.  

A number of tools and concepts are under development by NASA and the Federal Aviation Administration 
(FAA) to enable TBO by increasing the capacity, efficiency and accessibility of the NAS. This can be accomplished 
through changes in flight routing that avoid adverse weather and congestion, or by allowing increased opportunities 
for airlines and operators of future aviation concepts, such as unmanned aerial systems and on-demand mobility, to 
request routes that meet their preferences. Tools under development include tactical tools such as the Dynamic 
Weather Routes (DWR) tool2,3, Multi-Flight Common Routes (MFCR)4, Dynamic Routes for Arrivals in Weather 
(DRAW)5, the Optimized Route Capability (ORC)6, and the Traffic Aware Strategic Aircrew Requests (TASAR) 
tool7,8; and strategic tools such as the Collaborative Trajectory Options Program (CTOP)9. The effectiveness of each 
of these tools could be improved by generating routing advisories that have increased operational acceptance. These 
tools would therefore benefit from a functionality that quantifies route acceptability to Air Traffic Control (ATC). 
The contribution of this paper is to develop a predictor of a proposed route’s operational acceptability. This allows 
identification of the most important features for route operational acceptance, and could be used to inform route 
selection by decision support tools, ultimately contributing to the development of increasingly autonomous systems 
that are capable of routing aircraft with less human input than is currently the case.  

Background literature is presented in Section II. The approach for predicting the operational acceptability of 
route advisories is described in Section III, followed by results from training the algorithm in Section IV. 
Conclusions and recommendations for future work are presented in Section V. 

II. Background 
A number of studies have examined elements of route acceptability to ATC. Ref. 10 analyzed the historical 

usage of different flight routings in order to improve route acceptance for the NASA developed DWR tool2, which 
has been used to advise American Airlines dispatchers of en-route weather avoidance reroute opportunities in an 
operational trial.3 The results suggest that historical usage (i.e., whether a route has been used before) is a key 
requirement for a route’s acceptance by ATC – 96% of Center route amendments made in response to dispatcher-
accepted DWR reroute advisories from 29 days in the summer of 2014 also appeared in data from April 2015. 
However, the opposite is not true. Requesting a reroute that is observed in historical data does not guarantee ATC 
acceptance. In fact, 66% of dispatcher-accepted DWR reroute advisories that were rejected by ATC‡ in the 2014 
DWR data also appeared in the data from April 2015.10 It is clear that, while historical usage is generally indicative 
of route acceptance, there are also other reasons for a controller’s acceptance or rejection of a reroute request.  

Ref. 11 defines an optimization approach that generates operationally acceptable reroutes for flights predicted to 
request deviations from their current routes for weather. The method considers many factors including route 

                                                             
‡ A reroute was considered to be rejected by ATC when no Center route amendment was made in response to the 
dispatcher-accepted DWR route advisory, or a Center route amendment was made, but it was different to the DWR 
route advisory accepted by the dispatcher. 
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deviation distance, conformance of the reroute to historically flown routes, weather impact on the current route, 
sector congestion, and factors including required point-outs§ and inter-facility coordination. The routing network 
used for the optimization was generated by segmenting historically flown routes into fix-pair segments. Thus, all 
arcs in the modeled network consist of previously-flown connections between fixes, so each individual arc in the 
network has some level, depending on usage, of operational acceptability. Reroutes are constructed from these arcs 
using an optimization algorithm, and the reroutes that best meet a set of metrics of operational acceptability are 
presented as potential alternatives to users.12  

Other related research includes Ref. 13, which describes a concept for tactical reroutes around convective 
weather that leverages new technologies to automate the necessary coordination between traffic managers and 
controllers. The concept assumes the use of the Corridor Integrated Weather System (CIWS) and Convective 
Weather Avoidance Model (CWAM) for weather detection and in reroute generation to avoid the weather, and 
incorporates route acceptability factors described in Ref. 11. Ref. 7 presents the TASAR concept, which combines 
Automatic Dependent Surveillance-Broadcast (ADS-B) and airborne automation to enable user-optimal in-flight 
trajectory re-planning and to increase the likelihood of ATC approval for the resulting trajectory change request, 
incorporating traffic, weather, and airspace information in the optimization process.  

The approach described in the current paper differs from that used in Ref. 7, 11, 12, and 13 in that it uses 
historical data – particularly issued Center route amendments – to explicitly extract the drivers of operational 
acceptance, and builds a predictor that can be used to evaluate the likely operational acceptability of any generated 
route advisories. While it is very important to elicit subject matter expert (SME) feedback on what features are likely 
to drive ATC acceptance of route requests, because of the nature of how controllers make decisions about route 
requests, relying on SME input alone may have limitations. This is because controller decision-making is highly 
complex, based on many different factors and how these different factors impact each other, and it is difficult, even 
for SMEs, to explain all the nuances of their decisions to researchers. Operational data, however, if mined 
effectively, has the potential to yield many of these complexities and nuances, and it is these relationships that the 
current paper aims to extract. SME feedback can, however, be very useful in feature identification, and is also 
essential to better understand how the features that are identified as being most important drive operational 
acceptability.8  

III. Approach 
Data mining and machine learning techniques have been applied to learn trends and correlations from historical 

data in many fields, and ATM is no exception.14,15,16,17,18,19,20 Given suitable historical data, data mining and machine 
learning techniques provide an effective tool to identify the degree to which the operational acceptance of reroute 
advisories is predictable, and to build a predictor that would estimate the probability that a reroute advisory would 
be rejected by ATC or accepted and implemented in the form of a Center route amendment. They also provide the 
opportunity to identify the dominant drivers of ATC acceptability from the predictor feature set. 

A. Data Availability 
Data availability is a key constraint, and one of the biggest challenges when applying data mining and machine 

learning techniques to problems in ATM, because of the broad range of information used by controllers and traffic 
managers to make decisions. Ideally two classes of observations are desired. In the context of predicting the 
operational acceptability of reroute advisories, this means identifying which reroute advisories were rejected by 
ATC, with associated features, and which were accepted. Accepted reroute advisories are easily identified in the 
form of recorded Center route amendments, but rejected reroute advisories are much more difficult to identify, as 
they are not typically recorded. Single class classifiers, which apply techniques in anomaly detection, may be used 
to build predictors based on a single class of observations only (e.g., accepted advisories), but their accuracy is 
generally poorer than two-class classifiers, so the latter is preferable.  

During the DWR trials at American Airlines3, all proposed- and dispatcher-accepted reroute advisories generated 
by DWR were recorded. The ATC response to these dispatcher-accepted reroute advisories was then surmised based 
on whether or not the flight had a Center route amendment implemented within 30 minutes of its DWR reroute 
advisory being accepted by the dispatcher. This means that dispatcher-accepted DWR reroute advisories that 
resulted in no Center route amendment, or resulted in Center route amendments that differed from the dispatcher-
accepted reroute requested, were also recorded. These can be considered to represent ATC rejected reroute 

                                                             
§ A point-out refers to the need for one controller to request that the controller of an adjacent sector also monitors a 
flight that is close to the sector boundary. 
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advisories. This data therefore provides a useful dataset for which two-class classifiers can be developed to predict 
ATC route acceptability.  

The approach used in this paper is therefore to use two-class classification to train and test data-mining 
algorithms on the ATC rejected and accepted reroute advisories recorded by DWR over 5 months from May 9 
through September 30, 2014. The features used are described in the following section.  

B. Feature Identification 
A number of different features have been identified in the literature as being important to controller acceptance 

or rejection of reroute requests. In Ref. 11, 12 and 13 features considered in designing reroutes included route 
deviation distance, conformance of the reroute to historically flown routes, weather impact on the current route, 
sector congestion, and factors including required point-outs and inter-facility coordination. Ref. 8 identified similar 
features impacting controller acceptability of TASAR trajectory change requests based on observations at Atlanta 
Air Route Traffic Control Center (ZTL) and Jacksonville Air Route Traffic Control Center (ZJX), during TASAR 
trials from June 8 to June 20, 2015. The most common reasons for rejecting requests during the trials were conflicts 
with other traffic, violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, 
major arrival and departure flows and flow restrictions. Requests were also rejected due to the aircraft already being 
handed off to another sector, intruding into an active special use airspace (SUA), intruding into another center, 
weather, and unfamiliarity with the requested waypoint.  

In this paper, four sets of features impacting controller acceptance are included: 
1. Features describing historical route usage; 
2. Features describing demand;  
3. Features describing reroute deviation; and  
4. Features describing the maneuver starting point. 

These features are described in detail in the subsections below.  
 

Features Describing Historical Route Usage 
Features describing historical usage capture elements of many of the features listed in the literature, including 

conformance of reroutes to historically flown routes, the requirement for point-outs and inter-facility coordination, 
LOAs, major arrival and departure flows, SUA, Center boundary crossings, and familiarity with the requested 
waypoints. In this paper, historically observed routings were extracted from flight plans and Center route 
amendments in historical Aircraft Situation Display to Industry (ASDI) data from June to August 2015 for all 
sectors in Fort Worth Center (ZFW) and its adjacent Centers, generating tables of historically observed routings, 
with counts of historical usage, as described in detail in Ref. 10. These are referred to as common routing tables. 
June to August 2015 was chosen as the training set because it captures periods of high traffic and convective 
weather activity in the region studied, both of which can lead to the rerouting of flights. There is also no overlap 
with the period in 2014 for which DWR reroute advisories and Center route amendments were collected (May to 
September 2014), which are the routes for which historical usage is to be quantified. Routings were only extracted 
for local times between 05h00 and 00h00 (midnight) to ensure that the routings identified did not represent 
nighttime operations when unusual routings may be widely allowed because of very low traffic.  

Two approaches, illustrated in Figure 1, were used to identify how often the observed DWR reroute advisories 
and Center route amendments from 2014 appeared in the historical data from 2015. Full routing historical counts 
were identified by directly comparing the full reroute, from the maneuver start point to the return point on the 
original flight plan (the return capture fix), to the historically observed routes listed in the common routing tables, 
and, when identified, recording the historical count for that routing from June to August 2015. However, because 
full routings often appear relatively infrequently in the data, the DWR reroute advisories and Center route 
amendments from 2014 were also broken up into the component segments linking all the waypoints in the routing. 
These were each compared to the common routing tables. For each given DWR reroute advisory or Center route 
amendment, a new historical routing count by segment was then generated, based on the counts of the route’s 
component segments from the common routing tables. Specifically, the routing count by segment for a reroute is 
taken to be the minimum of the counts of all the component segments of that reroute. Routing counts by segment are 
generally higher than full routing counts. Further details of how the full and segment routing counts were generated 
can be found in Ref. 10.  

Two features (with abbreviations underlined) are therefore included in the feature set that describe historical 
usage on the proposed reroute: 
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1. Hist. Count (Full Routing): The full routing count from historical data (June to August 2015); 
2. Hist. Routing Count by Segment: The routing count by segment from historical data (June to August 

2015). 
 
Features Describing Demand  

Features describing demand capture elements of some of the other features described in the literature, including 
sector congestion, conflicts with other traffic, sector workload, and major arrival and departure flows. Some of these 
features may be explicitly included in future work. Particularly, one feature that may be of importance is whether or 
not the requested route would require close monitoring to avoid a potential conflict. This would be the case, for 
example, if the route took the flight towards another aircraft downstream. Acceptance of such a route would require 
monitoring by the controller to ensure that no potential conflict with the other aircraft arises. In this case, a more 
likely response would be a modification to the requested reroute to route the aircraft away from the other aircraft, 
which would require less monitoring. Because of limitations in the data available, a feature explicitly capturing this 
effect is not included in this paper. Instead four features are included that describe demand levels on the proposed 
reroute: 

3. MSS D/C Ratio: The ratio of demand to capacity (as defined by the Monitor Alert Parameter) (D/C) for 
the sector in which the reroute would start (the maneuver start sector, MSS), were it accepted by ATC 
(not all reroutes in the data ultimately resulted in Center route amendments). The maneuver start sector 
demand that was projected to be in the maneuver start sector when the flight in question started the 
maneuver was modeled explicitly. This demand was projected with data from the time when the 
controller made the decision to accept or reject the reroute, instead of using actual observed traffic 
counts from when the maneuver was to start. This provides a more realistic representation of the 
information available to the controller when making his/her decision to accept or reject the route 
request;  

4. MSS Over Capacity: Explicitly whether the maneuver start sector would be over capacity or not when 
the maneuver started; 

5. No. Sectors Over: The number of sectors between the maneuver start point and return capture fix in 
which demand would exceed capacity were the reroute to be accepted; 

6. Max D/C Ratio: The maximum ratio of demand to capacity across all sectors between the maneuver 
start point and return capture fix, were the reroute to be accepted. 

The ratio of demand to capacity for the maneuver start sector (MSS D/C Ratio), and whether or not it exceeds 
capacity (MSS Over Capacity), give an indication of the workload level for the controller that has to make the 
decision concerning whether to accept or reject the requested reroute. If the ratio of demand to capacity is high, there 
is also more likely to be a potential conflict that the controller must resolve if he or she were to accept the reroute. 
These features therefore represent proxies for the feature described above identifying whether or not the requested 
route would require close monitoring to avoid a potential conflict. 

The other two features described above (No. Sectors Over and Max D/C Ratio) account for the congestion and 
workload levels for downstream sectors, including neighboring sector workload, identified as a feature in Ref. 8. 
The controller taking the request does not have access to explicit demand and capacity information for the 

    
(a)                   (b) 

Figure 1. Comparison of (a) full routing approach and (b) segment approach to identifying routings in 
historical data.10 

 

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

30
78

 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

downstream sectors (such as through the flight schedule monitor, which is only available to the traffic manager). 
However, the controller is likely able to observe and project how busy other controllers are in their specific area, and 
hence these features are included. If it was a traffic manager that was making the decision, it is expected that these 
features would be more important. Again, if the ratio of demand to capacity is high downstream, there is also more 
likely to be a potential conflict that a downstream controller must resolve if the reroute is accepted.  

All demand related features were generated for each dispatcher-accepted DWR route advisory and flight plan 
amendment in the DWR trial data from 2015 using the Future ATM Concepts Evaluation Tool (FACET), which 
computes sector counts. Sector counts were projected based on active flight plans at the time when the DWR reroute 
advisory was accepted by the dispatcher, or when the flight plan amendment was made, and the resulting traffic in 
each sector at the times when the flight under question was projected to be in that sector. Projected sector counts 
were, however, based on actual departure times, which were extracted from the ASDI data, and not scheduled 
departure times, as would be the case in the flight schedule monitor. This is because scheduled departure times were 
not available in the data used. This will be adjusted in future work. 

Note that one key feature described in Ref. 11 that is relevant to the operational acceptability of reroute 
advisories is weather impact. This is not included in the feature set in this paper because all reroute advisories 
generated by DWR already avoid the forecast weather. However, it is important to recognize that this is also a 
critical feature. In future work, the minimum distance of the reroute from forecast convective weather may also be 
included as a feature. This data was not available for this paper. 
 
Features Describing the Reroute Deviation 

Reroute deviation distance was identified as important in designing reroutes in Ref. 11 and 12. While lateral 
deviation from the original route is used in those studies, in this paper we quantify the route deviation simply by the 
number of sectors traversed by the reroute, prior to returning to the original flight plan at the return capture fix. This 
represents how many sectors are likely to be impacted by the reroute were it to be accepted, and makes no reference 
to the number of sectors impacted by the original flight plan. The nature of the route deviation is also quantified by 
including a feature indicating whether or not the reroute requested is a direct routing to the return capture fix, or 
includes one or more auxiliary waypoints. This feature is included because it was observed in Ref. 10 that direct 
routings saw higher ATC acceptance than routings via auxiliary waypoints.  

The features included in the feature set describing reroute deviation are therefore as follows: 
7. No. Downstream Sectors: The number of downstream sectors between the maneuver start point and 

return capture fix; 
8. Direct Routing: Whether the routing is direct to the return capture fix, or via one or more auxiliary 

waypoints. 
 

Features Describing the Maneuver Start Point 
As described above, one cause for the rejection of reroute requests was that aircraft were close to being handed 

off to another sector.8 This suggests that the location of an aircraft in the maneuver start sector when the reroute is 
requested may be relevant to its acceptance or rejection. Two features 
are therefore included describing the aircraft location in the maneuver 
start sector: 

9. Time to Exit MSS: The time between when the reroute 
advisory is accepted by the airline dispatcher, and when 
the flight exits the maneuver start sector; 

10. Dist. to Exit MSS: The distance between the maneuver 
start point and the maneuver start sector boundary, along 
the requested reroute. 

A schematic of reroute events is shown in Figure 2. Two features 
are included to describe the aircraft location in the maneuver start 
sector because of limitations in the data used. The feature of most 
interest is the time between when the pilot requested the reroute from 
the controller (event 4 in Figure 2), and when the flight exited the 
maneuver start sector (event 7 in Figure 2), because this would give an 
indication of how long the controller would have to handle the 
request. However, no data is available on when the pilot requested the 
reroute from the controller. The only times that are available are the 
time when the airline dispatcher-accepted the reroute request (event 2 

 
Figure 2. Reroute Event Schematic 
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in Figure 2), before communicating it to the pilot, and when the aircraft exited the maneuver start sector. The 
difference between these times is calculated, and included as a feature (Time to Exit MSS). However, the location of 
the maneuver start point is set by DWR so as to be far enough downstream to allow for communication between the 
dispatcher and pilot, communication between the pilot and controller, and controller decision making. The location 
of the maneuver start point can therefore be considered a limit on when the controller is expected to be ready to 
implement a Center route amendment. The distance between the maneuver start point and sector boundary, along the 
requested reroute, is therefore also calculated, and included as a feature (Dist. to Exit MSS). In the case of observed 
Center route amendments, the maneuver start point is classed as the location at which the Center route amendment 
departs from the original flight plan. Note that the dispatcher can accept a reroute advisory when the maneuver start 
point is in a future sector. In this case, feature 9 is still calculated relative to the time to exit the maneuver start 
sector, and not the current sector. This is to account for the fact that, if the controller of the current sector were to 
reject the request because the aircraft is too close to hand-off, the pilot still has the opportunity to make the request 
of the controller in the following sector, for which this is less likely to be a problem. With more complete data, these 
features will be adjusted to more accurately capture the desired effects. 

The 10 features listed above do not capture all components of operational acceptability for requested reroutes, 
but cover the majority of those identified in the literature. Other features will be added in future work as they are 
identified.  

C. Data Mining 
Identification of the best model for predicting the operational acceptability of reroute advisories requires a 

number of development steps. These include (1) feature selection, (2) model selection and (3) parameter selection, in 
which the subset of features, the data mining algorithm, and parameters required by the data mining algorithm, 
respectively, are identified to maximize the chosen performance metric.  
1. Feature selection involves identifying which combination of features provide best model performance. This is 

done using k-fold cross-validation** to estimate the model performance with different combinations of features. 
For the results presented in this paper, a greedy forward search21 is used for feature selection, reducing the 
number of feature combinations for which the model performance is calculated. The greedy forward search 
procedure begins with an empty feature set and, in each step, adds the feature that results in the largest 
improvement in model performance to the current feature set, building up the feature set one feature at a time, 
until all features have been added. The feature set with highest model performance of all those tested is then 
adopted. In this paper, 10-fold cross validation is used for feature set evaluation, applying a random forest. A 
random forest22 is an ensemble learning method for classification that constructs a multitude of decision trees 
during training and outputs the class that is the mode of the classes of the individual trees.23 

2. Model selection involves identifying which data mining algorithm provides the best model performance. The 
model is a two-class classifier, with ATC rejection of a reroute defined as the ‘positive’ class, and ATC 
acceptance of a reroute defined as the ‘negative’ class. The positive class is typically labeled as the class for 
which it is most important to correctly predict results. The incorrect prediction that a reroute advisory will be 
accepted by ATC is not of particularly high importance in ATM, because ATC can still reject or modify the 
proposed route, as they would today, with very little cost other than controller workload. However, the incorrect 
prediction that a reroute advisory will be rejected by ATC could lead to no reroute being requested, or a less 
efficient reroute being requested, with a loss in efficiency benefits. Hence, in this paper ATC rejection is classed 
as the ‘positive’ outcome.  
 A number of algorithms are applied to train the model, using the R statistical computing environment. These 
include (1) logistic regression; (2) a support vector machine using a sigmoid kernel; (3) a decision tree; and two 
ensemble methods – (4) a random forest; and (5) adaptive boosting (AdaBoost)24. Again, k-fold cross 
validation, with k=10, is used to calculate model performance using each algorithm. 
 Imbalances in the number of observations in each class were also considered. For the full dataset 40% of 
routes are classed as rejected by ATC, while 60% of routes are classed as accepted. This does not represent a 
large data imbalance. The impact of class balancing on model performance (in terms of F-score, described 
below) was still explored, using a variety of over- and under-sampling approaches25,26,27,28, but none were found 
to improve performance, so are not presented in this paper.  

                                                             
** In k-fold cross-validation, the original sample is randomly partitioned into k equal sized subsamples. Of 
the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k − 1 
subsamples are used as training data. The cross-validation process is then repeated k times, with each of 
the k subsamples used exactly once as the validation data.  
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3. Finally, parameter selection involves identifying key parameters in the chosen data mining algorithm that 
provide the best model performance, e.g., the number of trees or weak leaners in a random forest or AdaBoost. 
In this paper, k-fold cross validation, with k=10, is used to calculate model performance across a range of each 
of the key parameters of the chosen algorithm.  

The choice of an appropriate metric for the model development process described above is critical. A number of 
metrics exist. Accuracy, which measures the fraction of correct predictions from all predictions made, is the most 
intuitive, but can be misleading when datasets are imbalanced. An alternative metric is F-Score (also called F1 Score 
or F-measure), which is the harmonic mean of precision and recall, calculated as in Equation (1). Here precision 
refers to the number of elements correctly labeled by the model as belonging to the positive class divided by the 
total number of elements labeled by the model as belonging to the positive class (i.e., the fraction of retrieved 
instances that are relevant). Recall refers to the number of elements correctly labeled by the model as belonging to 
the positive class divided by the total number of elements that actually belong to the positive class in the data (i.e., 
the fraction of relevant instances that are retrieved by the model) (also called Sensitivity or True Positive Rate). F-
Score varies from 0 to 1, with 1 being best. 

 𝐹" = 2 ∙ &'()*+*,-	∙	'()/00
&'()*+*,-	1	'()/00

  (1) 
One issue with both accuracy and F-Score as metrics for model performance is that they require setting of a 

discrimination threshold. Most binary classifiers output the probability of an observation falling within one of two 
classes. In order to classify the observation, this probability must be compared to a discrimination threshold. If the 
output probability is greater than the threshold, the observation is classed as positive. Otherwise, it is classed as 
negative. The discrimination threshold can be set to 0.5, giving equal importance to both classes. However, if one 
class is considered less desirable than the other, the threshold can be increased or decreased so as to decrease the 
likelihood of a false prediction in that class. If costs are known for misclassification in each class, the optimal 
threshold can be set accordingly. However, in many cases such costs are not known, making the setting of the 
threshold difficult. In the prediction of route operational acceptability, misclassification of route rejection could be 
considered costlier than misclassification of route acceptance, as discussed above, but specific costs have not been 
identified. This suggests, however, that a discrimination threshold of 0.5 or above (route rejection is the positive 
class) may make sense. In this paper, a discrimination threshold of 0.5 is applied, for simplicity. 

Additional performance metrics can be calculated by varying the discrimination threshold and plotting the 
resulting performance metrics. The Receiver Operating Characteristic (ROC) curve plots true positive rate against 
false positive rate, and the area under it provides a metric of model performance ranging from 0 to 1 (1 being best) 
that is not a function of the chosen discrimination threshold. When using normalized units, this area (typically 
referred to as Area Under the Curve, AUC) indicates the probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative one (assuming positive ranks higher than negative).29 
AUC varies from 0 to 1, with 1 being best. 

For the purposes of this paper, model development is based on maximizing F-Score, with the discrimination 
threshold set to 0.5. Accuracy and AUC are, however, also quoted. ROC curves are also plotted. 

D. Validation 
The purpose of validation is to demonstrate that the approach described above, including the processes of 

feature, model and parameter selection, produces a predictor that can be effectively used to predict whether a new 
reroute advisory would be operationally acceptable to ATC or not. This is typically done by dividing the original 
dataset into two sets: one ‘development’ set for developing the model, and one ‘evaluation’ or ‘test’ set, for testing 
the developed model on as-yet-unused data. This ensures that the data used to train the model and compare model 
parameters is not used to evaluate the model performance. Once the approach has been validated, a final model can 
be trained on all the available data.  

If the available dataset is small, it is desirable to calculate performance metrics based on all the data, which can 
be done using k-fold cross validation. Because k-fold cross validation is already used in the selection of the features, 
model and parameters, ‘nested’ k-fold cross validation is needed for validation. This means that the data is split into 
k1 folds, which are used, in different combinations, to compile k1 different evaluation sets and k1 different 
development sets. Each development set is then split into k2 folds (k1 may differ from k2), which are each used for 
feature, model and parameter selection using k2-cross validation. With the feature set, model and parameters 
selected, the resulting models developed using each of the k1 development sets are then re-trained on their full 
development set, before being tested on their respective k1 evaluation sets. The model performance across all k1 
evaluation sets, which represents the whole dataset, can then be calculated. Note, however, that the feature, model 
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and parameter selection across all k1 models may not be consistent. Results applying this approach are presented in 
Section IV-D for the prediction of route operational acceptability to ATC. 

Once suitable validation results have been generated, the model development can be repeated on the full dataset, 
using k-fold cross validation across the full dataset for feature, model and parameter selection. The features, model 
and parameters selected for the prediction of route operational acceptability to ATC are presented in Section IV-A, 
B, and C respectively. Once features, model and parameters are selected, the final predictor can be trained on all the 
available data. 

IV. Results 
Results differ depending on how ATC reroute advisory acceptance and rejection are defined. All those accepted 

DWR reroute advisories that had no Center route amendment implemented within 30 minutes of it being accepted 
by the dispatcher are classed as rejected by the controller. Similarly, all those observed Center route amendments 
that are made within 30 minutes of a DWR route advisory being accepted by a dispatcher are classed as accepted by 
the controller. This includes observed Center route amendments that match the DWR reroute advisory accepted by 
the dispatcher, and observed Center route amendments that are a modification of the accepted DWR route advisory 
requested. In this latter case, the original dispatcher-accepted reroute advisory that was modified by the controller 
before being implemented can be classed as either accepted or rejected by the controller, depending on how the 
predictor is to be used. From the airline perspective, these reroute advisories did lead to delay savings in the form of 
a Center route amendment, even if the actual routing ultimately differed from the accepted advisory. This would 
suggest that, were the predictor to be used by airlines, it may make sense to class these original dispatcher-accepted 
reroute advisories as ultimately accepted by the controller. However, from a system perspective, there could be 
workload benefits from generating reroute advisories that are not only acceptable to controllers after modification, 
but acceptable to controllers before any modification. In this case, for reroute advisories that are modified, only the 
implemented Center route amendment is classed as ATC accepted, while both the original dispatcher-accepted 
reroute advisory that is later modified by the controller, and reroute advisories that do not result in any Center route 
amendment, are classed as ATC rejected. This is how ATC acceptance and rejection of reroute advisories is defined 
in Ref. 10. For the results presented in this paper, we apply this latter definition. Feature, model and parameter 
selection results, applied to the full dataset, are presented below, followed by model validation results using nested 
cross-validation. Finally, results applying a single class classifier are also presented for comparison. 

A. Feature Selection 
Feature selection results, calculated for the full dataset with the positive class defined for routes that are rejected 

or modified by ATC, and the negative class defined for routes that are accepted by ATC, are presented in Table 1 
and Figure 3. The maximum number of observations included in all steps of the feature selection is 544, of which 
40% are positive and 60% negative. Because some observations have missing data for some features, each step of 
the feature selection has a different number of observations, ranging from 317 to 544, depending on the feature set 
used. The first column of Table 1 shows a list of all features considered. The second column shows the F-Scores for 
a random forest, trained on each of these features separately. The random forest is trained with 40 decision trees, no 
constraint on the tree depth, and a minimum terminal node size of 1. The number of features randomly sampled as 
candidates at each split, with replacement, is the floor of the square root of the total number of features (i.e., 𝑝 , 
where p is the total number of features). The highest F-Score in column 2 (0.674) is for the feature Hist. Routing 
Count by Segment. This indicates that historical usage is the strongest single contributor to reroute operational 
acceptance tested, as suggested in Ref. 10. Using the greedy forward search approach to feature selection, Hist. 
Routing Count by Segment is therefore retained as a feature, and the model performance reevaluated with each 
remaining feature added to the feature set separately. Results are shown in column 3 of Table 1. Including Time to 
Exit MSS in the feature set with Hist. Routing Count by Segment yields the highest F-Score for 2 features (0.719), 
indicating that the location of the aircraft in the maneuver start sector when the reroute is requested is relevant to the 
reroute operational acceptability, as suggested in Ref. 8. Forward search is used to add all remaining features, with 
results shown in Table 1.  

The feature yielding the highest F-Score (0.815) contains 7 features, as follows: 
1. Hist. Routing Count by Segment;  
2. Time to Exit MSS; 
3. No. Downstream Sectors; 
4. Direct Routing; 
5. Dist. to Exit MSS; 
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6. MSS D/C Ratio; and 
7. MSS Over Capacity. 

The inclusion of any more features than those listed above did not improve the model performance. Note that 
this feature set includes features describing historical usage (1), location of the aircraft in the maneuver start sector 
(2 and 5), reroute deviation (3 and 4), and demand (6 and 7). Significantly, the selected features describing demand 
only describe demand in the maneuver start sector, and not in downstream sectors. This means that downstream 
sector demand did not manifest in the data, suggesting that downstream demand may not be a significant factor in 
the operational acceptability of reroutes. This may be because controllers have limited information on downstream 
sector demand when making decisions.  

Figure 3 shows the ROC curve for the random forest, for each of the feature sets identified to maximize F-Score 
in Table 1, from 1 to 7 features. There is a clear progression as features are added, shifting the ROC curve towards 
the upper left (a perfect model would be in the upper left corner).  

With the feature set selected, the data-mining algorithm that maximizes F-Score can be selected. 

B. Model Selection 
Model selection results are presented in Table 2 and Figure 4. The features used are the 7 features listed in 

Section IV-A above. The number of observations included is 317, of which 48% are positive and 52% negative. The 
SVM applies a sigmoid kernel; the random forest is as described in Section IV-A; and AdaBoost is applied with 40 
decision trees as weak learners. The best performing model in terms of F-Score is the random forest (0.815), with 
AdaBoost the second best (0.766). The random forest also performs best under all other metrics.  

Table 1. Forward search feature selection results (F-Score), applying a random forest for the prediction of 
ATC operational acceptability of DWR advisory reroutes from May to September 2014. Order of features 
selected in parentheses in column 1. (MSS: Maneuver Start Sector; D/C: Demand over Capacity).  

	
1		

Feature	
2	

Features*	
3	

Features*	
4	

Features*	
5	

Features*	
6	

Features*	
7	

Features*	
8	

Features*	
9	

Features*	
10	

Features*	
Hist.	Count	(Full	Routing)	(10)	 0.648	 0.695	 0.753	 0.771	 0.764	 0.766	 0.801	 0.775	 0.767	 0.780	

Hist.	Routing	Count	by	Segment	(1)	 0.674	 -	 -	 -	 -	 -	 -	 -	 -	 -	
Direct	Routing	(4)	 0.387	 0.597	 0.705	 0.775	 -	 -	 -	 -	 -	 -	
No.	Sectors	Over	(9)	 NA	 0.599	 0.693	 0.743	 0.746	 0.766	 0.809	 0.783	 0.797	 -	
Max	D/C	Ratio	(8)	 0.255	 0.664	 0.751	 0.773	 0.769	 0.789	 0.772	 0.784	 -	 -	

MSS	Over	Capacity	(7)	 NA	 0.583	 0.674	 0.744	 0.758	 0.782	 0.815	 -	 -	 -	
MSS	D/C	Ratio	(6)	 0.381	 0.660	 0.749	 0.758	 0.773	 0.796	 -	 -	 -	 -	

No.	Downstream	Sectors	(3)	 0.484	 0.667	 0.755	 -	 -	 -	 -	 -	 -	 -	
Time	to	Exit	MSS	(2)	 0.497	 0.719	 -	 -	 -	 -	 -	 -	 -	 -	
Dist.	to	Exit	MSS	(5)	 0.467	 0.665	 0.719	 0.761	 0.789	 -	 -	 -	 -	 -	

* Includes feature set with highest F-Score from previous column 
 

 

Figure 3. ROC curves for forward search feature selection, applying a random forest in the prediction of ATC 
operational acceptability of DWR advisory reroutes from May to September 2014. Filled circles represent the 
points with 0.5 discrimination threshold presented in Table 1. (MSS: Maneuver Start Sector; D/C: Demand 
over Capacity) 
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Figure 4 shows the ROC curve for each of the models, where it is clear that the random forest provides the best 
performance across a range of discrimination thresholds. 

C. Parameter Selection 
In a random forest, a key parameter that must be set is the number of decision trees, i.e., the weak learners used. 

It is important that the number of trees is large to ensure that all observations are used, preferably more than once, 
and that all features are used, again preferably more than once. If the number of trees is too small the predictive 
power of the random forest decreases. Because the problem described in this paper has a small number of features 
(7), and the number of observations is also not large (317), a very large number of trees is unnecessary. 10-fold 
cross-validation is used to compare the performance of the model with a range of values for this parameter, from 20 
to 100, as shown in Table 3 and Figure 5. In Table 3, the number of trees that maximizes the model F-Score is 40. 
This value also maximizes all other metrics. The ROC curve for the different parameter values in Figure 5 shows 
that the results vary very little with number of trees. 

Three other key parameters that require setting in random forests are the maximum tree depth for the weak 
learners, the minimum terminal node size, and the number of features randomly sampled as candidates at each split. 
Because of the small data size and small number of features, however, no constraint is imposed on the tree depth in 
this paper, and the minimum terminal node size is fixed at 1. The number of features randomly sampled as 
candidates at each split, with replacement, is also fixed, at 𝑝 , where p is the total number of features. Given p=7, 
2 features are randomly sampled at each split. 

 
In summary, the model development suggests that the best performing model for the prediction of ATC 

operational acceptability of reroute requests in ZFW and its adjacent Centers is as follows: 
• Features: Hist. Routing Count by Segment; Time to Exit MSS; No. of Downstream Sectors; Direct 

Routing; Dist. to Exit MSS; MSS D/C Ratio; and MSS Over Capacity 
• Model: Random Forest  
• Number of Trees: 40 

Table 2. Model selection results (F-Score) for the prediction of ATC operational acceptability of DWR 
advisory reroutes from May to September 2014.  

	 Logistic	Regression	 Decision	Tree	 SVM	 Random	Forest	 AdaBoost	
Accuracy	 0.732	 0.735	 0.685	 0.817	 0.776	

Misclassification	Error	 0.268	 0.265	 0.315	 0.183	 0.224	
True	Positive	Rate	 0.711	 0.750	 0.632	 0.842	 0.763	
True	Negative	Rate	 0.752	 0.721	 0.733	 0.794	 0.788	

Precision	 0.725	 0.713	 0.686	 0.790	 0.768	
F-score	 0.718	 0.731	 0.658	 0.815	 0.766	

Area	Under	ROC	 0.818	 0.767	 0.770	 0.886	 0.864	
Average	Precision	 0.776	 0.687	 0.735	 0.870	 0.826	

 

Figure 4. ROC curves for model selection, in the prediction of ATC operational acceptability of DWR 
advisory reroutes from May to September 2014. Filled circles represent the points with 0.5 discrimination 
threshold presented in Table 2. 

 

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

30
78

 



 
American Institute of Aeronautics and Astronautics 

 
 

12 

D. Model Validation 
Table 4 and Figure 6 present the results of the nested 10-fold cross validation, including feature, model and 

parameter selection as described in Section III-D. The validation dataset is reasonably well balanced (out of 317 
observations, 40% are positive, and 60% negative). Accuracy measures the fraction of correct predictions from all 
predictions made. Misclassification Error measures the fraction of incorrect predictions from all predictions made 
(i.e., 1 – Accuracy). True Positive Rate refers to recall, defined in Section III-C. True Negative Rate refers to the 
number of elements correctly labeled by the model as belonging to the negative class divided by the total number of 
elements that actually belong to the negative class (also called Specificity). Precision, F-Score and AUC are as 
defined in Section III-C. 

The model performance is reasonable, with an F-Score of 0.767. Other performance metrics such as accuracy, 
precision and AUC are also reasonable. Accuracy particularly can be compared directly to the percentage of the 
majority class (60%). This can be considered to be a baseline accuracy which could be achieved with a model that 
simply specifies all outputs to be the majority class (i.e., ATC accepted), without consideration of any feature 
values. In comparison, the model developed has an accuracy of 74.4%, which is 14.4% better than this baseline. The 
true positive rate in Table 4 is particularly high (0.875), indicating that the approach is effective at accurately 
predicting whether a reroute is likely to be rejected or modified by ATC. As stated above, this is of particular 
importance in the application considered, because misclassification of route rejection by ATC could lead to no 
reroute being requested, or a less efficient reroute being requested, with a loss in efficiency benefits. The true 
negative rate is lower (0.624), indicating that the approach is less effective at accurately predicting whether a reroute 
is likely to be accepted by ATC. Again, as stated above, this is of less importance in this application, however, 
because ATC can still reject or modify a proposed route, as they would today, with very little cost other than 
controller workload.  

Table 3. Parameter selection results (F-Score) for a random forest with the specified number of trees, for the 
prediction of ATC operational acceptability of DWR advisory reroutes from May to September 2014.  

	 Number	of	Trees	

	 20	 30	 40	 50	 60	 70	 80	 90	 100	
Accuracy	 0.798	 0.801	 0.817	 0.798	 0.798	 0.795	 0.808	 0.792	 0.785	

Misclassification	Error	 0.202	 0.199	 0.183	 0.202	 0.202	 0.205	 0.192	 0.208	 0.215	
True	Positive	Rate	 0.829	 0.816	 0.842	 0.809	 0.822	 0.816	 0.829	 0.803	 0.796	
True	Negative	Rate	 0.770	 0.788	 0.794	 0.788	 0.776	 0.776	 0.788	 0.782	 0.776	

Precision	 0.768	 0.780	 0.790	 0.778	 0.772	 0.770	 0.783	 0.772	 0.766	
F-score	 0.797	 0.797	 0.815	 0.794	 0.796	 0.792	 0.805	 0.787	 0.781	

Area	Under	ROC	 0.877	 0.871	 0.886	 0.875	 0.870	 0.878	 0.883	 0.874	 0.867	
Average	Precision	 0.860	 0.820	 0.870	 0.833	 0.844	 0.854	 0.863	 0.840	 0.835	

 

Figure 5. ROC curve for a random forest with the specified number of trees, in the prediction of ATC 
operational acceptability of DWR advisory reroutes from May to September 2014. Filled circles represent 
the points with 0.5 discrimination threshold presented in Table 3. 
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Choice of a different discrimination threshold could alter the tradeoff between true positive rate and true 
negative rate, moving along the ROC curve shown in Figure 6. The area under the ROC curve (AUC), however, is 
high (0.814), indicating good model performance across a range of discrimination thresholds. 

As part of the model validation, reroute acceptability by ATC was also discussed with a retired traffic manager 
familiar with ZFW and the adjacent Center airspace. He suggested that the most important factors in determining the 
operational acceptability of a requested reroute in ZFW while airborne were (1) characteristics of the underlying 
airspace, such as location of airport arrival and departure flows; (2) the controller’s individual workload levels; and 
(3) time to hand-off to the next sector. The importance of characteristics of the underlying airspace (1) is consistent 
with identifying Hist. Routing Count by Segment as a key feature in the feature selection results described in Section 
IV-A. Controller workload (2) would be impacted by demand levels in the maneuver start sector, which is consistent 
with identifying MSS D/C Ratio and MSS Over Capacity as key features in Section IV-A. Time to hand-off (3) 
would be impacted by the location of the aircraft in the maneuver start sector, which is consistent with identifying 
Time to Exit MSS and Dist. to Exit MSS as key features in Section IV-A.  

Reroute deviation was considered by the retired traffic manager to be of lower importance. Two of the features 
identified in Section IV-A, No. Downstream Sectors and Direct Routing, describe reroute deviation. No. 
Downstream Sectors may be capturing the need for flight plan waypoints at center boundary crossings, or similar 
geographical airspace related requirements. It is more likely that reroutes traversing a high number of sectors would 
not meet this requirement, requiring reroute modification. Direct Routing may be capturing the historical usage of 
the reroute, since direct routings in this dataset saw higher historical usage than routings via an auxiliary waypoint. 
As described in Ref. 10 this is because auxiliary waypoints are primarily used to avoid weather, and weather is 
highly variable. In the version of DWR fielded, many of the routings used to avoid different weather cells via 
auxiliary waypoints are unique, not appearing in the historical data at all.  

The retired traffic manager also confirmed that controllers do not have information about downstream demand, 
which would make features describing downstream demand, such as No. Sectors Over and Max D/C Ratio, of little 
relevance. This is consistent with the feature selection results in Section IV-A, where these features were not 
identified as being important.  

Table 4. Nested cross validation results for the prediction of ATC operational acceptability of DWR 
advisory reroutes from May to September 2014. 

	 Nested	Cross-Validation	
Accuracy	 0.744	

Misclassification	Error	 0.256	
True	Positive	Rate/Recall	 0.875	

True	Negative	Rate	 0.624	
Precision	 0.682	
F-Score	 0.767	
AUC	 0.814	

 

Figure 6. ROC curve for nested cross validation results for the prediction of ATC operational acceptability 
of DWR advisory reroutes from May to September 2014. Filled circle represents the point with 0.5 
discrimination threshold presented in Table 4. 
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E. Single Class Classifier 
It is not obvious how the model developed in this paper can be extended to other regions and applications, 

because of the limited data for rejected reroute advisories on which to train a two-class classifier. Alternative 
approaches exist, such as single-class classification, for which only a single class of observations are required in the 
form of Center route amendments. These are widely available. The performance of single class classifiers is, 
however, significantly poorer than the two-class classifiers developed in this paper. Developing a single-class 
classifier for the problem considered in Sections IV-A to IV-D, using a Support Vector Machine (SVM) with 
sigmoid kernel, yields a very low F-Score of 0.314 when model results are compared to actual route acceptance. 
This is significantly lower than the 0.815 model development F-Score for the two-class classifier using a random 
forest (Table 2), or even the 0.658 F-Score for the two-class classifier using a comparable SVM. The rate at which 
the single-class classifier predicts reroute acceptance by ATC is actually high – 0.879 – but the prediction of reroute 
rejection by ATC – at a rate of only 0.211 – leads to the low F-Score. This is expected since it is route rejection for 
which no training data is used. However, as discussed earlier, it is the prediction of route rejection by ATC that is 
considered of highest importance in many applications. However, in applications for which the prediction of route 
acceptance is most important, this could provide a viable alternative. Other algorithms will be considered in future 
work. However, ultimately, most beneficial to the building of an effective predictor of route operational 
acceptability would be better data for the two-class classification problem, both in terms of geographical coverage 
(beyond ZFW and adjacent Centers) and in terms of quality. This latter point is of particular importance. The data 
from the 2014 DWR trial does not include information describing exactly what route was requested of the controller, 
or when the route was requested. While proxies for this exist in the data used in this paper, discrepancies between 
these and what was really seen by the controller erode the performance of the model. Hence, future work should 
focus on identifying or generating more complete sources of data. 

V. Conclusions 
In this paper, the authors developed a predictor of operational acceptability for airborne reroute advisories. This 

was based on applying data mining techniques to flight plan amendment data and data from a trial of the NASA 
developed DWR tool at American Airlines in 2014. Routes implemented in the form of a Center route amendment 
within 30 minutes of the reroute advisory being accepted by the airline dispatcher were classed as operationally 
acceptable to ATC. Routes are classed as operationally unacceptable to ATC if it they are either modified by the 
controller before being implemented in the form of a Center route amendment, or do not result in any Center route 
amendment being implemented at all. Features used in the development of the predictor include data on historical 
usage of the advised route, demand levels in the maneuver start sector and downstream, route deviation from the 
original flight plan, and the location of the maneuver start point in the maneuver start sector. Features, models and 
key model parameters were selected using 10-fold cross validation, while nested cross validation was used to 
validate the model performance, giving a reasonable F-Score of 0.77. Importantly, the rate at which the classifier 
predicts whether a reroute is likely to be rejected or modified by ATC is high: 0.88. This is of particular importance 
in the application considered, because misclassification of route rejection by ATC could lead to no reroute being 
requested, or a less efficient reroute being requested, with a loss in efficiency benefits. 

Features identified as relevant include:  
(1) Hist. Routing Count by Segment: A route’s historical routing count by segment, based on the counts of the 

route’s component segments from historical data;  
(2) Time to Exit MSS: The time between when the reroute advisory is accepted by the airline dispatcher and 

when the flight exits the maneuver start sector;  
(3) No. Downstream Sectors: The number of downstream sectors between the maneuver start point and return 

capture fix;  
(4) Direct Routing: Whether the routing is direct to the return capture fix or via one or more auxiliary 

waypoints;  
(5) Dist. to Exit MSS: The distance between the maneuver start point and the maneuver start sector boundary, 

along the requested reroute;  
(6) MSS D/C Ratio: The ratio of demand to capacity (as defined by the Monitor Alert Parameter) for the 

maneuver start sector; and  
(7) MSS Over Capacity: Explicitly whether the maneuver start sector is over capacity, or not, when the 

maneuver is to start.  
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Through discussions with a retired traffic manager, it was confirmed that the majority of these features would be 
expected to be relevant to the operational acceptability of requested airborne reroutes in ZFW and adjacent Centers. 
The model found to provide best performance was a random forest with 40 trees.  

The application of data mining to the DWR trial data presented in this paper provides significant results 
indicating that reroute advisory operational acceptability is indeed predictable, and that, with suitable data, models 
can be trained to predict reroute advisory operational acceptability. Such models may ultimately be used to inform 
route selection by decision support tools, contributing to the development of increasingly autonomous systems that 
are capable of routing aircraft with less human input than is currently the case.  

It is also important to highlight that one of the advantages of increasingly autonomous systems is that they can 
enable efficiency improvements that would not be possible without automation. This could include the enabling of 
control actions that would not be considered operationally acceptable to controllers today, but which are safe. One 
example would be to allow reroutes through regions of airspace, like arrival corridors, that are generally protected 
by controllers, if it can be confirmed that this would be safe because no arrival traffic is present at that time. In 
today’s operations, controllers are unlikely to do this because they have limited information about demand levels in 
other sectors. The development of a tool solely using data mining based on past operations would miss this 
opportunity. Data mining should therefore be combined with other approaches, such as optimization, to take full 
advantage of opportunities for efficiency improvements. 
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