NATO-STO HFM-247

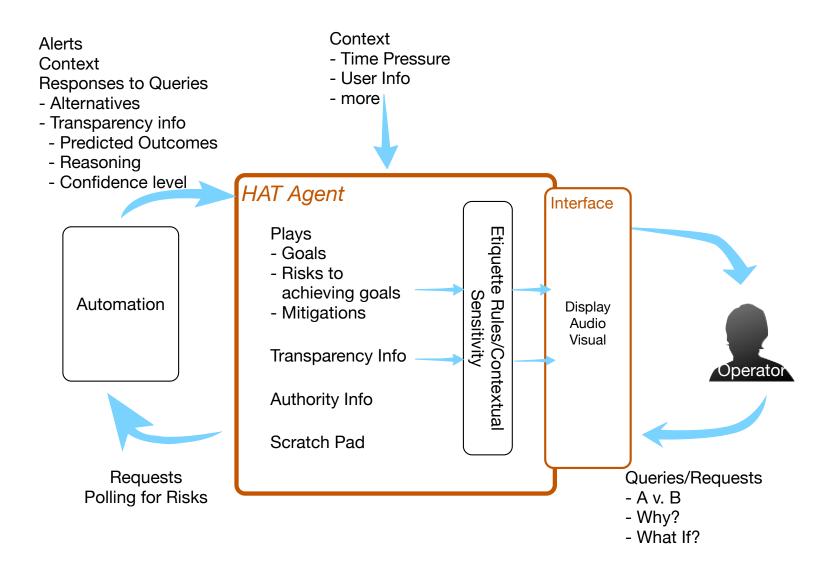
Human Autonomy Teaming: Supporting Dynamically Adjustable Collaboration

Tech Activity Update
US (NASA)
HAT-MAPP
Model, Agent, Principles & Patterns (MAPP)

Jay Shively
NASA-Ames Research Center

May 2, 2017

Outline



Goals:

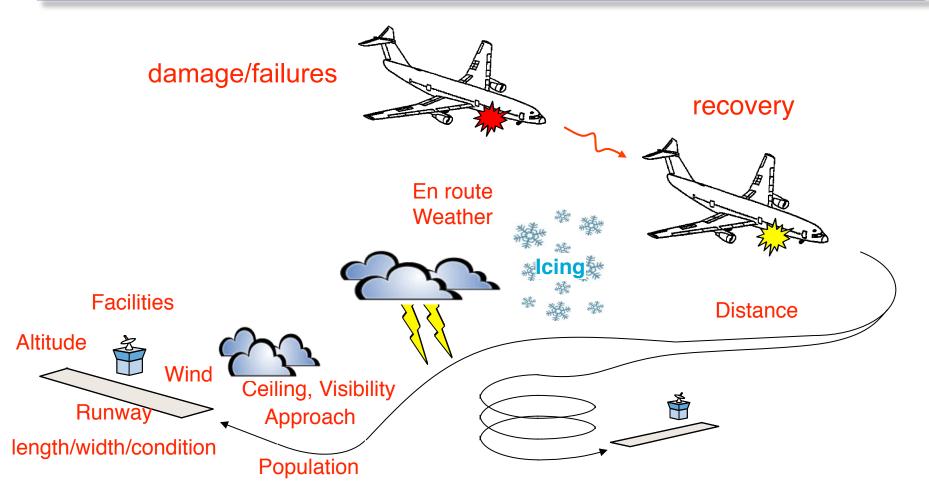
- Develop conceptual model of HAT
- II. Test concepts and principles of HAT
- III. Develop pattern(s) of HAT solution(s)
- IV. Develop a re-usable HAT software agent

Develop conceptual model of HAT

Principles of HAT

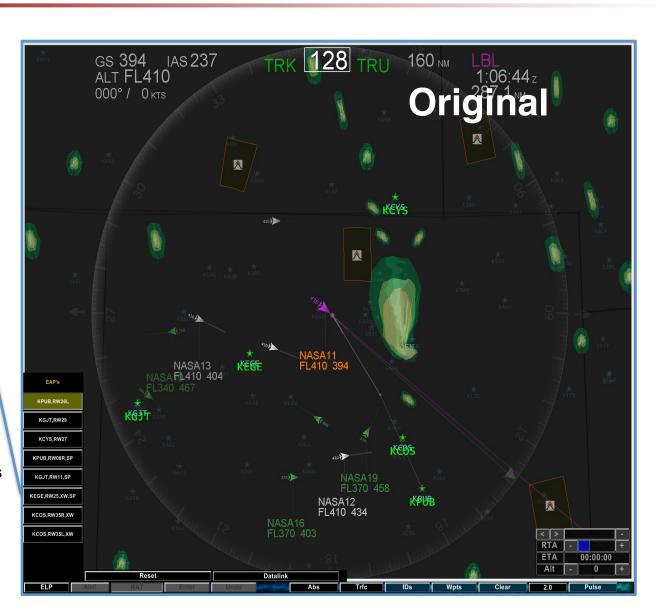
Make the Automation into a Teammate

- Bi-Directional Communication
- Transparency
- User Directed Interface
- Requires:
 - Shared goals
 - Shared language or comm channel
 - Shared SA
- Levies req'ts on Auto
 - Explanatory ability
 - Self-confidence
 - Comm

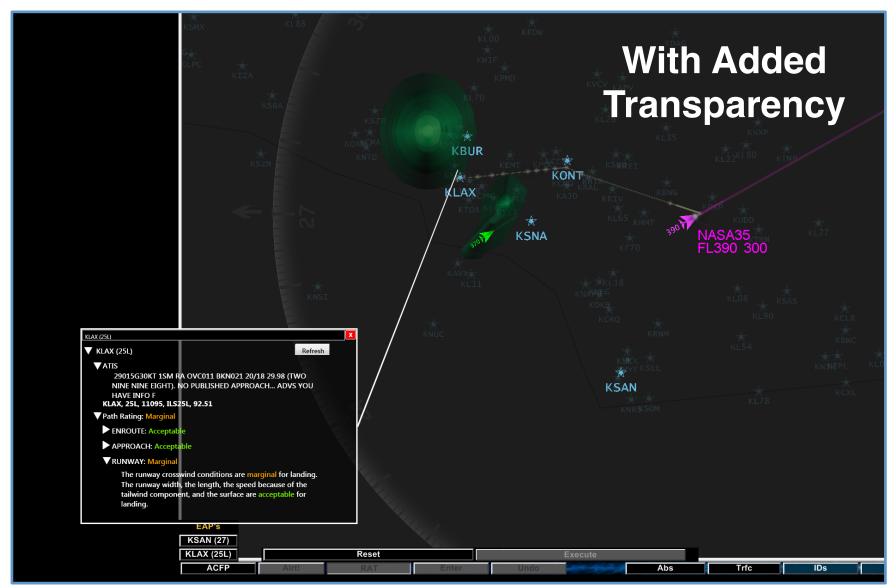

II. Test concepts and principles of HAT (sim 1)

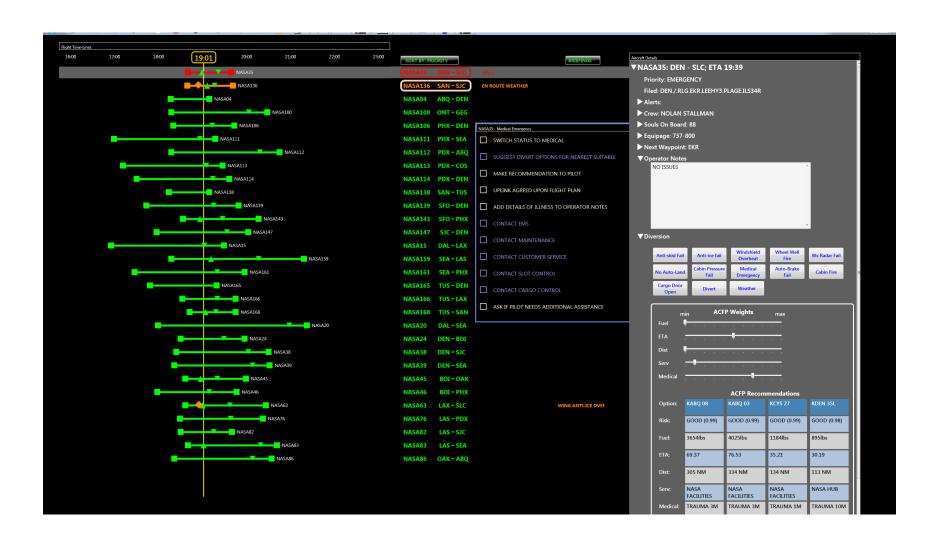
ELP Objective



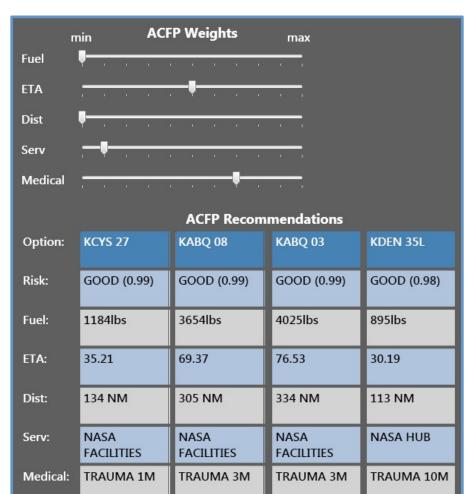

Find the best landing sites and routes for the aircraft

ACFP Before HAT




Recommended airports - rank ordered.

Human-Directed: Operator calls "Plays" to determine who does what


A play encapsulates a plan for achieving a goal.

It includes roles and responsibilities what is the automation going to do what is the operator going to do

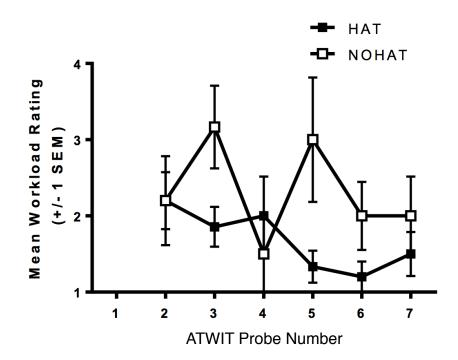
NASA35 - Medical Emergency			
	SWITCH STATUS TO MEDICAL		
	SUGGEST DIVERT OPTIONS FOR NEAREST SUITABLE		
	MAKE RECOMMENDATION TO PILOT		
	UPLINK AGREED UPON FLIGHT PLAN		
	ADD DETAILS OF ILLNESS TO OPERATOR NOTES		
	CONTACT EMS		
	CONTACT MAINTENANCE		
	CONTACT CUSTOMER SERVICE		
	CONTACT SLOT CONTROL		
	CONTACT CARGO CONTROL		
	ASK IF PILOT NEEDS ADDITIONAL ASSISTANCE		

- Transparency: Divert reasoning and factor weights are displayed.
- Negotiation/Dialog: Operators can change factor weights to match their priorities.
- Shared Language/Communication: Numeric output from ACFP was found to be misleading by pilots. Display now uses English categorical descriptions.

HAT Simulation: Tasks

- Participants, with the help of automation, monitored 30 aircraft
 - Alerted pilots when
 - Aircraft was off path or pilot failed to comply with clearances
 - Significant weather events affect aircraft trajectory
 - · Pilot failed to act on EICAS alerts
 - Rerouted aircraft when
 - Weather impacted the route
 - System failures or medical events force diversions
- Ran with HAT tools and without HAT tools

HAT Simulation: Results



- Participants preferred the HAT condition overall (rated 8.5 out of 9).
- HAT displays and automation preferred for keeping up with operationally important issues (rated 8.67 out of 9)
- HAT displays and automation provided enough situational awareness to complete the task (rated 8.67 out of 9)
- HAT displays and automation reduced the workload relative to no HAT (rated 8.33 out of 9)

HAT Simulation: Results

 HAT workload reduction was marginally significant (HAT mean 1.7; No HAT mean 2.3, p = .07)

HAT Simulation: Debrief

Transparency

 "This [the recommendations table] is wonderful.... You would not find a dispatcher who would just be comfortable with making a decision without knowing why."

Negotiation

- "The sliders was [sic] awesome, especially because you can customize the route.... I am able to see what the difference was between my decision and [the computer's decision]."

Human-Directed Plays/Shared Plans

 "Sometimes [without HAT] I even took my own decisions and forgot to look at the [paper checklist] because I was very busy, but that didn't happen when I had the HAT."

II. Test concepts and principles of HAT (sim 2) Transparency: Trust Repair (on-going)

- Goal 1: Evaluate the effect of transparency-based trust repair strategies on trust recovery following a poor quality recommendation from an automated recommender system
- Goal 2: Investigate the effect of trust and reliance of internal vs. external root causes of errors committed by the automated system
- 2 x 2 mixed-subjects design
- IVs
 - Apology transparency (between-subjects)
 - Based on Chen et al.'s (2014) SA Transparency Levels
 - · Apologies provided with SA levels 2 (comprehension) and 3 (prediction) transparency
 - Internal vs. external attribution (within-subjects)

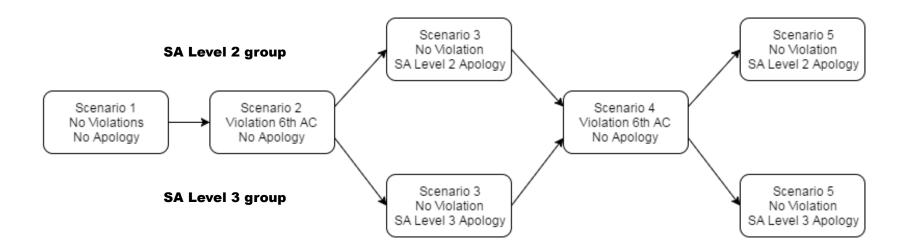
DVs

- Objective measures: time to decision, acceptance/rejection of recommendation
- Subjective measures: trust, workload, ratings of helpfulness, understanding and confidence

24 participants

- 12 in SA Level 2 apology group, 12 in SA Level 3 apology group
- Order of internal/external attribution statements counterbalanced

Trust Repair



	Internal Attribution	External Attribution
SA Level 2 Apology	"I'm sorry. I made a miscalculation that caused the previous recommendation to be of poor quality."	"I'm sorry. The ATIS broadcast for the previous recommendation was out-of-date and led me to give you a poor quality recommendation."
SA Level 3 Apology	"I'm sorry. I made a miscalculation that caused the previous recommendation to be of poor quality. The bug has been fixed and I will perform better this time."	"I'm sorry. The ATIS broadcast for the previous recommendation was out-of-date and led me to give you a poor quality recommendation. All ATIS broadcasts are now updated and I will perform better this time."

Five scenarios

- Six aircraft per scenario
- All land instruction
- Trust violations: ACFP returns poor rec for sixth aircraft of Scenarios 2 and 4
- Trust repair: apology offered at beginning of scenarios 3 and 5 per Robinette et al. 2016

Trust and Transparency Research

- Ran low fidelity and high fidelity HILTS with commercial pilots evaluating a flight re-planning tool
- NASA Ames and Air Force Research Laboratory to conduct HITL activities to evaluate the impact of transparency on trust
 - Completed 2 HITLs with commercial pilots evaluating a flight re-planning tool
 - Transparency was found to impact trust
 - Current study is examining transparency in the context of trust repair

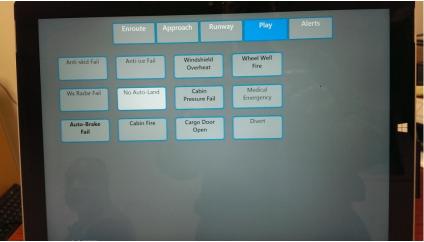
•

II. Test concepts and principles of HAT (sim 3) Flight Deck HAT/no HAT (June, 2017)

- Independent Variable: No HAT vs HAT
 - No HAT
 - HAT: Inclusion of Transparency, Negotiation, and Pilot Directed interface improvements
- Twelve Pilot Participants
- Dependent Variables:
 - Behavioral
 - Eye movements/scan patterns (to determine which display the pilot is fixated on)
 - Pilot inputs between recommendation and acceptance: does pilot bring up charts, or modify view of charts prior to accepting/ rejecting recommendation?
 - Subjective
 - Subjective responses: during the scenario (ATWIT workload, recommendation quality) and at the end of the scenario (workload, situation awareness, trust, etc.)

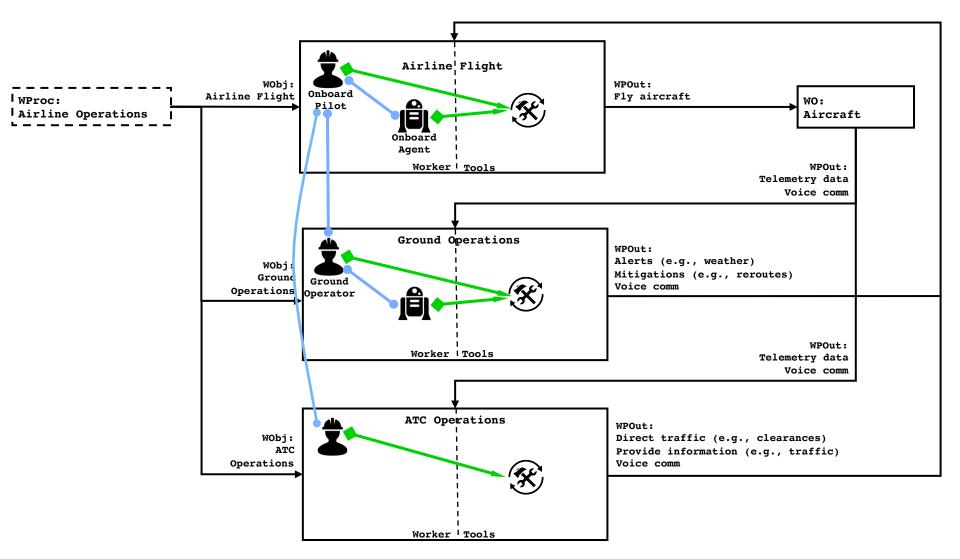
Independent Variables: HAT

- HAT condition
 - Transparency
 - ACFP shows divert reasoning and factor weights
 - Negotiation
 - Allow operator to change factor weights
 - Allow operator to suggest different airport
 - Pilot-directed
 - Allow operator to explicitly call plays
 - Plays use smart checklists with automated steps
- no HAT condition
 - Current operations
 - No ACFP
 - Paper checklist


Status

Status

- Adapted ground station scenarios & checklists for flight deck tablet
- Established Multi Aircraft Control System & TeamSpeak connectivity between CSULB and OPL
- Autonomous
 Constrained Flight
 Planner running at
 CSULB and connected
 to OPL
- Subjects running in early June


III. Develop pattern(s) of HAT solution(s)

- A. Graphical Representation
- B. Textual Description

Top-Level System Work

III. B. Textual Description

Specific Slides to be presented in Dialog Mgt. Section (1:40 – 2:20)

Initial Gamma Pattern Headings 15 Dec

Sent to Gilles
 15 Jan

Gilles feedback
 15 Feb

• Skype 24 March

• Revision 21 April

IV. Develop a re-usable HAT software agent Delivery Oct 2017

NASA

- Design and develop technologies and interfaces for automated systems that can facilitate teamwork between the human operator and automation
 - Ability to adjust levels of automation (working agreements)
 - Manage multiple plays, each with multiple aircraft
 - Context sensitive
 - Dynamic play manipulation

Delivered

- Analysis of on- and off-board technologies that could support improvements in safety or reduction in crew complement
- Software requirements
- Interface prototype

On-going

- Programming of HAT agent
- Integration of HAT agent with NASA ground station
- Demonstration of HAT agent technologies
- Publication of 1st year results

Summary

- Excellent Progress
- Proposing follow-on work in:
 - Safety
 - UAS in the NAS