

X-ray micro-tomography for advanced material technologies: a NASA perspective

Joseph C. Ferguson ¹ Francesco Panerai ² Arnaud Borner ¹ Nagi N. Mansour ³ Michael Barnhardt ³ Michael Wright ³

1. STC at NASA Ames Research Center 2. AMA at NASA Ames Research Center 3. NASA Ames Research Center Space Tech Expo, 2017 Pasadena, CA

Thermal Protection Systems

Ablative Thermal Protection Systems

Stardust Capsule

Dragon V1 & V2

Mars Science Laboratory

Material Design and Modeling

Lachaud and Mansour, JTHT 2013

Lawson et. al. 2010

X-ray micro-tomography

- Advanced Light Source (ALS) at the Lawrence Berkeley Natl. Laboratory
- Synchrotron electron accelerator used to produce 14Kev X-rays
- Used for many research areas, including optics, chemical reaction dynamics, biological imaging, and X-ray micro-tomography.

http://www2.lbl.gov/MicroWorlds/ALSTool

X-ray micro-tomography

Collect X-ray images of the sample as you rotate it through 180°

Use this series of images to "reconstruct" the 3D object

Courtesy of D. Parkinson (ALS)

X-ray micro-tomography

X – Ray Projections

Reconstruction Software

Reconstructed Image Stack

Characterize material microstructure

Material design from micro-structure

- Use of x-ray micro-tomography to characterize material micro-structure
- Determination of physical properties such as pore size, fiber diameter

- Determination of material properties and response based on micro-structure
- Porosity, specific surface area, thermal conductivity, permeability, tortuosity

- Generation of artificial microstructures
- Goal of fine-tuning material characteristics to meet design requirements

Porous Materials Analysis (PuMA)

Technical Specifications

- Written in C++
- GUI built on QT
- Visualization module based on OpenGL
- Parallelized using OpenMP for shared memory systems

Effective Material Properties

Porosity

- Based on the grayscale threshold
- Sum of all void voxels over the total volume

Specific Surface Area

- Based on the Marching Cubes algorithm
- Overall surface area computed as a sum of individual triangle areas

Effective Thermal Conducitivity

- Computes effective thermal conductivity using a finite difference method [Weigmann, 2006]
- BicGStab iterative method and FFTW used to solve linear system of equations [Sleijpen, 1993]
- Parallelized based on OpenMP
- Verified against complex analytical solutions

Diffusivity / Tortuoosity

Continuum

 Solves for effective diffusivity using a finite difference method

Transitional/Rarified

- Solves effective diffusivity through a random walk method
- Knudsen number is varied by changing molecular mean free path

Permeability using DSMC

- Direct Simulation Monte Carlo (DSMC): probabilistic simulation method to solve the Boltzmann equation for finite Kn
- Simulates fluid flow using a particle-based approach with particle-particle and particle-surface interactions
- Ability to solve chemically reacting flows at high Knudsen numbers (where typical CFD is no longer valid)
- DSMC code: SPARTA (Sandia)

Borner et al., Int J Heat Mass Transfer (2016), in press

Micro-Scale Oxidation Simulations

- Particle-based oxidation method
- Diffusion simulated through random walks
- Collision detection with linear interpolation method
- Sticking probability method for material recession
- Verified against analytical solutions for single fiber

Ferguson et al., Carbon 96 (2016), 57-65

Micro-Scale Oxidation Simulations

Material Generation

Conclusion and Outlook

- Micro-tomography and simulations
 - Help us developing TPS response modes
 - Enable predictive materials modeling
 - Support cheaper and faster material development
 - Impact not only Entry Descent Landing, but also other NASA's grand challenges:

Acknowledgements

- This work was supported by the Entry System Modeling project (M.J. Wright project manager) of the NASA Game Changing Development program.
- T. Sandstrom, C. Henze, D. Ellsworth, and B. Nelson for useful discussions during the development of PuMA and the parallelization of the oxidation model.
- A.A. MacDowell and D.Y. Parkinson are acknowledged for their assistance with tomography measurements.
- The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.