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Thermal	Protection	Systems

NASA TM 101055, 1989
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Carbon	fibers Resin PICA

Ablative Thermal Protection Systems

Stackpoole et al., AIAA 2008-1202 www.spacex.com

Stardust	Capsule Dragon	V1	&	V2 Mars	Science	Laboratory



Material Design and Modeling
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X-ray micro-tomography

• Advanced	Light	Source	(ALS)	at	the	Lawrence	
Berkeley	Natl.	Laboratory

• Synchrotron	electron	accelerator	used	to	
produce	14Kev	X-rays

• Used	for	many	research	areas,	including	
optics,	chemical	reaction	dynamics,	biological	
imaging,	and	X-ray	micro-tomography.

Berkeley	Labs,	Flickr

http://www2.lbl.gov/MicroWorlds/ALSTool



X-ray micro-tomography
Collect	X-ray	images	of	the	sample	as	you	rotate	

it	through	180°
Use	this	series	of	images	to	
“reconstruct”	the	3D	object

Multiple	anglesPenetrating	power
6

Courtesy of D. Parkinson (ALS)



X-ray micro-tomography

X – Ray Projections

Reconstruction 
Software

Reconstructed Image Stack





Determine	effective	material	
properties	and	response

Material	design	from	
micro-structure

• Determination	of	material	
properties	and	response	based	on	
micro-structure

• Porosity,	specific	surface	area,	
thermal	conductivity,	permeability,	
tortuosity

• Generation	of	artificial	micro-
structures

• Goal	of	fine-tuning	material	
characteristics	to	meet	design	
requirements

Characterize	material	micro-
structure

• Use	of	x-ray	micro-tomography	to	
characterize	material	micro-
structure

• Determination	of	physical	
properties	such	as	pore	size,	fiber	
diameter



Porous Materials Analysis (PuMA) Technical	Specifications

• Written	in	C++
• GUI	built	on	QT
• Visualization	module	based	on	

OpenGL
• Parallelized	using	OpenMP for	

shared	memory	systems



Effective Material Properties
Porosity

Specific	Surface	Area

• Based	on	the	Marching	
Cubes	algorithm	

• Overall	surface	area	
computed	as	a	sum	of	
individual	triangle	areas

• Based	on	the	grayscale
threshold

• Sum	of	all	void	voxels	over	
the	total	volume



Effective Thermal Conducitivity
• Computes	effective	thermal	conductivity	using	a	

finite	difference	method	[Weigmann,	2006]
• BicGStab iterative	method	and	FFTW	used	to	

solve	linear	system	of	equations	[Sleijpen,	1993]
• Parallelized	based	on	OpenMP
• Verified	against	complex	analytical	solutions

12-ply,	dry
12-ply,	infused	
(fully	dense)



Diffusivity / Tortuoosity
Continuum

Transitional/Rarified

• Solves	for	effective	
diffusivity	using	a	finite	
difference	method

• Solves	effective	diffusivity	
through	a	random	walk	
method	

• Knudsen	number	is	varied	
by	changing	molecular	
mean	free	path



Permeability using DSMC

Borner et al., Int J Heat Mass Transfer (2016), in press
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• Direct	Simulation	Monte	Carlo	(DSMC):	probabilistic	
simulation	method	to	solve	the	Boltzmann	equation	
for	finite	Kn

• Simulates	fluid	flow	using	a	particle-based	approach	
with	particle-particle	and	particle-surface	interactions

• Ability	to	solve	chemically	reacting	flows	at	high	
Knudsen	numbers	(where	typical	CFD	is	no	longer	
valid)

• DSMC	code:	SPARTA	(Sandia)





Micro-Scale Oxidation Simulations
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• Particle-based oxidation method
• Diffusion simulated through random walks
• Collision detection with linear interpolation method
• Sticking probability method for material recession
• Verified against analytical solutions for single fiber

Ferguson et al., Carbon 96 (2016), 57-65





Micro-Scale Oxidation Simulations

Ferguson et al., Carbon 96 
(2016), 57-65



Material Generation

Random	Fiber	Structures Packed	Sphere	Beds Periodic	Foams



Conclusion and Outlook
• Micro-tomography	and	simulations

• Help	us	developing	TPS	response	modes
• Enable	predictive	materials	modeling
• Support	cheaper	and	faster	material	development
• Impact	not	only	Entry	Descent	Landing,	but	also	other	NASA’s	grand	challenges:

600	µm
10	m

12-ply,	dry12-ply,	infused	
(fully	dense)
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