‘Migrogravity Response:
‘ ilizing GeneLab

el b:hdsa.gov) to Develop
oJo) '-es for Saceflight Risks

{ e

Wyle Labs, Space B|05C|ences DIVISIO NASA Ames Research Center Moffett
F|eId CA

afshin.beheshti@nasa.gov
abeheshti@tuftsmedicalcenter.org
Office: 617-636-6449



N\What’is Systems Biology? &¥-3

. Systems%iqlog{i atte pts\teo undefstand biolcgical organisms Of «

Jsystems as\\a, wholehrather than researching their individual
> tomponents)‘,\i,h',;rsomtion{rom\one another. }' ,

. - N R B s . -
= NIBdefines Systems Biology 'JSystems biology is an approachfir
'z olomedical rese;}r;‘h OMOErsStEting the larger picture—be it atp”
shtheslevel of the¥o ,3;.5;::,” : \ peell—by putting its pieces

F
her. It’s in starkSCORTE L O3 a0essofreductionist biology,
' N8 tye PIECEERETL AW .

'

Thanks to Systems
Biology, we now have
a clear picture of
complex diseases!



Q

~—©

/
|
|

Normal

tissue = y—o- (=, 29 / o
] Ny v - N
N : :. o 1 A -, 3 ‘ ' | | :\\ y




Genelab Data Used to Generate Results
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Number of Significant Genes from Each Dataset

p-value < 0.05 FDR < 0.05
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Predicted Master Regulators
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Age Tissue Type Time in Flight Data Set Prevelance of Change
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Canonical Pathways

Age

Sex

Tissue Type
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Flight Condition

Data Set
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Determin,jciq_p of Key Genes/Drivers
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Key Genes and the Connections

A) ot =N Direct Connections for Key Genes for Flight vs AEM
Jepoias; B) Connections Between all Key Genes for all Datasets (Flight vs AEM):

R W{Q\ S : Radial Plot with the most Connected Gene in the Middle
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Reviséd View of Mo% Biofogy

Classical View of New Understanding of
Molecular Biology Molecular Biolo

siRNAs
pPiRNAs

h Regulatory
RNA

e Asingle miRNA has been estimated to regulate up to 500 mRNAs

* miRNAs are single-stranded RNA sequences, of about 22 nucleotides in length,
processed from longer transcripts.

* miRNAs are important regulators that repress the translatiorf@f mRNA transcripts
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Impact of Circulating microRNAs
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Systems Biology View of miRNAs

Tumor Suppressor miRNAs

‘ OncomiRNAs Only looking at a single miRNA

Tumors
Inhibited

i j looking at a pair of miRNAs

No Change in Tumors
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In pursuit of the elusive miRNA...

Systems Biology Approach:
Looking at how the entire
system impacts the most
Important miRNAs

Tumors

Inhibited Tumors

Promoted



Predicted miRNAs Involved with Microgravity Effects

* miRNAs predicted from interaction from all key genes
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We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity
condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially
expressed in MMG-incubated PBLs compared with 1g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150-
3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed
gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression
data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of
immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and
regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression
with that of genes involved in immune/inflammatory response (e.g., IFNG and ILI7F), apoptosis (e.g., PDCD4 and PTEN), and
cell proliferation (e.g., NKX3-1and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results
obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the
frequency of apoptosis and decreases cell proliferation.

dicine (2017) 49, e348; d;: g71038/emm.2017.80
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Predicted miRNAs Involved with Microgravity Effects
Health Risk Due to miRNAs

Biological Health
Risk Increased

@ Predicted Activation
@D Predicted Inhibition

O Negative Impact on Health
O Positive Impact on Health
C Both Positive and Negative Impact

HRS = Health Risk Score




~ Overall Surhmary of All Data

Systemic tumor-host effects
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Systems biology approach allows for systemic understanding of the impact of
Microgravity. :

Circulating miRNAs can influence overall progression of health risk to the host.

miRNAs can potentially be used for novel minimally invasive therapeutics and
countermeasures

Genelab (genelab.nasa.gov) is a powerful tool to generate hypotheses and direct future
space research ¢
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