

A Loosely Coupled approach for the CFD code US3D and Radiation code NEQAIR

Balachandra R. Mettu

North Carolina State University

Mentor: Dr. Joseph C. Schulz NASA Ames Research Center

Background

- A Thermal Protection System (TPS) is required to protect the vehicle from severe heating environments during high speed entries.
- The physics of the entry aeroheating is controlled by phenomenon like:
 - Convection (US3D/DPLR)
 - Radiation (NEQAIR)
 - Surface chemistry (FIAT/ICARUS)
 - In-depth conduction (FIAT/ICARUS)

Background

- A Thermal Protection System (TPS) is required to protect the vehicle from severe heating environments during high speed entries.
- The physics of the entry aeroheating is controlled by phenomenon like:
 - Convection (US3D/DPLR)
 - Radiation (NEQAIR)
 - Surface chemistry (FIAT/ICARUS)
 - In-depth conduction (FIAT/ICARUS)

- In reality, these processes are coupled due to the surface energy balance.
- Assumptions have to be made about their time/length scales.
- Thus, allowing the use of uncoupled approaches.

Motivation

• Main focus:

Fluid-dynamics and Radiation coupling

• The amount of fluid-radiation coupling can be estimated by evaluating the Goulard number (Γ):

$$\Gamma = \frac{2q_{unc}^R}{\frac{1}{2}\rho_{\infty}u_{\infty}^3} = \frac{\text{Uncoupled radiative energy flux}}{\text{Total energy flux}}$$

- Different values for Γ :
 - FIRE II $^{[1]}$ ~ 0.01 to 0.03
 - Galileo Probe $^{[8]} \sim 0.1$
 - Titan Aerocapture $^{[8]} \sim 0.4$
- An uncoupled solution over-predicts the total heating by almost 15% for FIRE II^[1].
- For atmospheric conditions such as in Titan or during Jovian entry the fluid-radiation coupling becomes a must.

- Past work on fluid-radiation coupling have mainly used structured codes:
 - Palmer et al.^[1] using DPLR-NEQAIR.
 - Johnston et al.^[7] using LAURA-HARA.
- First attempt to use US3D an unstructured code.
 - US3D is developed by University of Minnesota in collaboration with NASA Ames and other partners.
 - Will be the next generation CFD tool for NASA Ames.
 - Important to have the capability of fluid-radiation coupling.
- Develop a loosely coupled methodology using US3D and NEQAIR.

Coupling Procedure

Coupling Procedure

Extracting LOS

- Challenging in an unstructured code.
- Connectivity not explicitly given using grid index.
- An efficient searching algorithm is required for searching nearest neighbors.
- The kd-tree algorithm in US3D is used.
- It organizes data in a way that a large chunk of data points can be excluded during the search.
- A zeroth-order interpolation of flow data along the LOS.

Steps in LOS Extraction

- Serial code runs using the US3D post-processor.
- Time required for extracting 100 lines with 100 points each:
 - FIRE II grid ~ 10^4 cells = 1 sec.
 - EAST grid $\sim 10^6$ cells = 60 sec.
- User Inputs:
 - Grid file grid.h5, connectivity file conn.h5 and solution file data.h5
 - No. of points to extract per line.
 - The wall boundary name and gas file name used.
- Outputs and Capabilities:
 - Extract lines at any given point on the wall or between any two given points.
 - Write LOS data in NEQAIR (.h5/.dat) or Tecplot readable (.dat) format.
 - Mirror LOS data about the outer boundary (useful for shock tube problems).

- Tangent Slab approximation:
 - The radiation is along a line of sight normal to the wall.
 - Johnston et al.^[4] showed that the tangent-slab assumption is sufficient to model the source term but not the radiative heating on surface.
 - Difference in computed values: Ray-tracing vs Tangent-slab^[4]
 - Source term: under 3% stagnation line & shoulder, 10% afterbody.
 - Radiative heating: 11% stagnation line, 17% shoulder, 40% afterbody.

Results – FIRE II

Flow Conditions

Time (s)	Altitude (km)	${\it U}_\infty$ (km/s)	T_{∞} (K)	$ ho_{\infty}$ (kg/m³)	<i>T_w</i> (K)
1636	71.0	11.31	210	8.57×10 ⁻⁵	810
1643	53.0	10.48	276	7.80×10 ⁻⁴	640
1645	48.4	9.83	285	1.32×10 ⁻³	1520

Computational Models					
Fluxes	Modified Steger-Warming				
Time integration	Data Parallel Line Relaxation (DPLR)				
Gas	Air – 11 species				
Reaction rates	Park two-temperature model				
Vibrational-Electronic energy	NASA Lewis data fits				
Transport properties	Gupta collision model				

Coupling – FIRE II

- The heating rates converged in 3-4 coupling iterations.
- Decrease in heating rates after coupling:
 - Convective 6.5 %
 - Radiative 23.5 %

Heating Rates

- Net effect of the radiative source term:
 - Lowers convective and radiative heating rates at the wall.
 - Reduction in bow shock stand-off distance.
 - This effect is known as radiative cooling.
- Tauber and Wakefield^[2] derived an approximate relation for the ratio of the coupled radiative heating to the adiabatic one as a function of the Goulard number (where $\kappa = 3.45$).

$$\frac{q_{coup}^R}{q_{ad}^R} = \frac{1}{1 + \kappa \, \Gamma^{0.7}}$$

Fractional change in radiative heating:

U_{∞}	Г	US3D-NEQAIR		Palmer et al. ^[1]	
(m/s)		T&W	Results	T&W	Results
11.31	0.036	0.748	0.793	0.779	0.935
10.48	0.031	0.767	0.765	0.782	0.781
9.83	0.011	0.872	0.842	0.881	0.919

Summary

- Developed a user module for US3D to perform fluidradiation coupling simulations with NEQAIR.
- The coupling simulations were performed on the 2-D axisymmetric FIRE II grid for three different flow conditions.
- The effects of the fluid-radiation coupling were seen as a reduction in the convective/radiative heating rates and decrease in the shock stand-off distance.
- The reduction in radiative heating rates seems to be comparable to those predicted by Tauber-Wakefield^[2].

Future Work

- Adding the capability in the LOS tool to extract lines any given angle.
 - Extract a no. of LOS within a given solid angle.
- Evaluate the effects of the Tangent-Slab assumption on the flow field.
 - Computationally very expensive as the radiation on every LOS emanating from the wall face needs to be computed.
- Better interpolation of source term into the domain.
- Comparison of US3D-NEQAIR simulations with those done from DPLR-NEQAIR.

Thank you Any Questions ?

Special Thanks to:

Joseph C. Schulz Aaron M. Brandis Khalil Bensassi Brett A. Cruden Suman Muppidi David B. Hash

References

- 1) Grant E. Palmer, Todd White, and Alexander Pace. "Direct Coupling of the NEQAIR Radiation and DPLR CFD Codes", *Journal of Spacecraft and Rockets*, Vol. 48, No. 5 (2011), pp. 836-845.
- 2) Tauber, M., and Wakefield, R., "Heating Environment and Protection During Jupiter Entry," *Journal of Spacecraft and Rockets*, Vol. 8, No. 6, 1971, pp. 630–636.
- 3) Wright, M. J., Candler, G. V., and Bose, D., "Data-Parallel Line Relaxation Method for the Navier–Stokes Equations," *AIAA Journal*, Vol. 36, No. 9, Sept. 1998, pp. 1603–1609.
- 4) Christopher O. Johnston. "Impact of Non-Tangent-Slab Radiative Transport on Flowfield-Radiation Coupling", 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-1371).
- 5) Wright, M., "Aerothermodynamics Lecture," Guest Lecture for AE 6355 (Planetary Entry Descent and Landing), Georgia Institute of Technology, Spring 2009, Instructor: R.D. Braun.
- 6) Goulard, R., "The Coupling of Radiation and Convection in Detached Shock Layers," *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 1, 1961, pp. 249–257.
- 7) Johnston, C. O., Gnoffo, P. A., and Sutton, K., "Influence of Ablation on Radiative Heating for Earth Entry," *Journal of Spacecraft and Rockets*, Vol. 46, No. 3, May 2009, pp. 481–491.
- 8) Michael J. Wright, Deepak Bose, and Joe Olejniczak. "Impact of Flowfield-Radiation Coupling on Aeroheating for Titan Aerocapture", *Journal of Thermophysics and Heat Transfer*, Vol. 19, No. 1 (2005), pp. 17-27.