CubeQuest CHALLENGE

Liz Hyde Millennium Engineering and Integration NASA Ames Research Center SmallSat 2017– August 5, 2017

Agenda

What is CubeQuest?

- NASA Centennial Challenges
- The CubeQuest Challenge
 - Challenge Structure
 - o Prizes!
 - $\,\circ\,$ SLS Integration

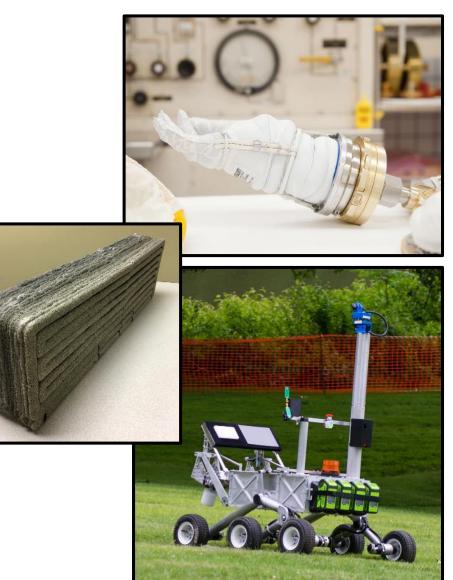
The Teams

- GT1-3 Winners/Prizes
- GT4 Winners

The Technologies

- Propulsion
- Communications
- Other Tech

Next Steps



CubeQuest Challenge

WHAT IS CUBEQUEST

NASA Centennial Challenges

- Space Technology Mission Directorate created Centennial Challenges in 2005
- Since 2005, over \$6m has been given out as prizes
- Past Challenge include Sample Return Robots, Astronaut Gloves, Strong Tethers, and Green Flight
- Current Challenges: 3D Printed Habitat, Space
 Robotics, Vascular Tissue, and
 CubeQuest

The Cube Quest Challenge

- Designed in 2013
- Official "Kick-Off" in January 2015
- \$5m in total prize money
 Plus SLS Launch Opportunity
- Non-government, US entities eligible
- Both Ground and In-Space competitions
 - 4 "Ground Tournaments"
 - 2 in-space "Derbies", with multiple prizes per Derby

Competitions & Prizes

Ground Tournaments

Ground Tournament 1: August, 2015

"MCR/SRR" Level Top 5 - \$20,000

Ground Tournament 2: March, 2016

"PDR" Level

Top 5 - \$30,000

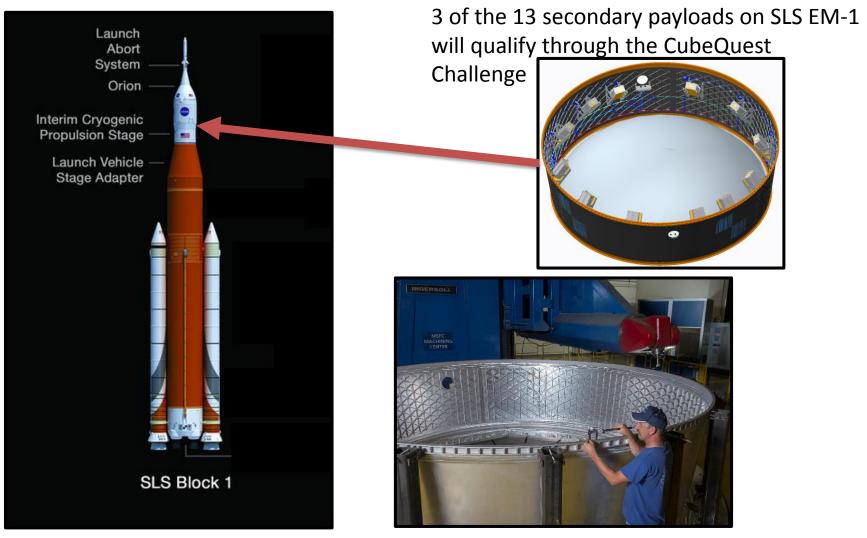
Ground Tournament 3: October, 2016

"CDR" Level

Top 5 - \$30,000

Ground Tournament 4: June, 2017

Between "CDR" and "SAR/FRR" Level Top 3 - \$20,000


CubeQuest is the first government challenge to take place in space!

Lunar/Deep Space Derbies

Lunar DerbyAchieve Lunar Orbit\$1.5 M (shared)Best Burst Data Rate\$250,000Largest Aggregate Data
Volume\$750,000Spacecraft Longevity\$500,000

Deep Space Derby	
Farthest Communications Distance (>4m Km)	\$250,000
Best Burst Data Rate	\$250,000
Largest Aggregate Data Volume	\$750,000
Spacecraft Longevity	\$500,000

SLS EM-1 Launch Opportunity

SmallSat 2017

The Path to EM-1

- CubeQuest EM-1 Launch Checklist:
- Top 5 finisher in either GT-1 or GT-2
- Top 3 finisher in GT-4 \Box Score >3.0 in GT-4
- Complete/Pass all SLS Safety Reviews
 - Get manifested!

BioSentinel	AES
NEA Scout	AES
Lunar Flashlight	AES
Lunar IceCube	AES
SkyFire	SMD
CuSP	SMD
LunaH-Map	SMD
EQUULEUS	JAXA
OMOTENASHI	JAXA
ArgoMoon	ASI
CisLunar Explorers	STMD
CU-E3	STMD

EM1 Secondary Payload Manifest

Team Miles

STMD

CubeQuest Challenge

THE TEAMS

Ground Tournaments Lead to EM-1 Launch

GT1 – 13 Teams

Alpha Cubesat - Xtraordinary Innovative Space Partnerships, Inc (Cabin John, MD)

- Cislunar Explorers Cornell University (Ithaca, NY)
- HuskySat University of Washington (Seattle, WA)
- Lunar CubeQuestador Missouri University of Science and Technology (Rolla, MO)
- MIT KitCube Massachusetts Institute of Technology (Cambridge, MA)
- Novel Engineering Novel Engineering Inc.

(Cocoa Beach, FL)

OpenOrbiter Lunar I - University of North
 Dakota

(Grand Forks, ND)

 ERAU Eagles - Embry-Riddle Aeronautical University

(Daytona Beach, FL)

- Project Selene Flintridge Preparatory School (La Cañada Flintridge, CA)
- Heimdallr- Ragnarok Industries, Inc. (Wilmington, DE)
- SEDS University of California San Diego (San Diego, CA)
- Team Miles Fluid & Reason LLC (Tampa, FL)
- True Vision Robotics Isakson Engineering (Atacsadero, CA)

Top 5 teams were awarded \$20,000 and qualified for EM-1 launch opportunity

GT2 – 10 Teams

• CisLunar Explorers, Cornell

• Eagles-Quest, Embry-Riddle

Earth Escape Explorer (CU-E3),

University of Colorado, Boulder

Goddard Orbital and Atmospheric

Lunar CubeQuestador, Missouri

MIT KitCube, Massachusetts

Institute of Technology

(Cambridge, MA)

(Wilmington, DE)

(San Diego, CA)

(Tampa, FL)

Diego

University of Science & Technology

• Heimdallr, Ragnarok Industries Inc.

SEDS Triteia, SEDS University of San

• Team Miles, Fluid & Reason LLC

Testing Satellite (GOATS), Worcester

Aeronautical University

(Daytona Beach, FL)

Polytechnic Institute

(Worcester, MA)

(Rolla, MO)

John, MD)

University

(Ithaca, NY)

(Boulder, CO)

Alpha CubeQuest, XISP Inc (Cabin

GT3 – 7 Teams

- Team Miles Fluid & Reason (Tampa, FL)
 - Cislunar Explorers Cornell University (Ithaca, NY)
 - CU-E3- University of Colorado, Boulder (Boulder, CO)
 - KitCube Massachusetts Institute of Technology, (Cambridge, MA)
 - SEDS Triteia University of California, San Diego (San Diego, CA)
 - Heimdallr, Ragnarok Industries Inc. (Wilmington, DE)
 - Goddard Orbital and Atmospheric Testing Satellite (GOATS), Worcester Polytechnic Institute (Worcester, MA)

GT4 – 5 Teams

- Team Miles Fluid & Reason (Tampa, FL)
- Cislunar Explorers Cornell University (Ithaca, NY)
- CU-E3- University of Colorado, Boulder (Boulder, CO)
- SEDS Triteia University of California, San Diego (San Diego, CA)
- Heimdallr, Ragnarok Industries Inc. (Wilmington, DE)

Only 3 teams met the minimum scoring criteria

Top 3 teams were awarded \$20,000 and continue with SLS launch safety reviews and manifesting on EM-1

Top 5 teams were awarded \$30,000 and qualified for EM-1 launch opportunity

Top 5 teams were awarded \$30,000

The Teams – GT-4

Ground Tournament 4 Winners

CisLunar Explorers

- Academic leam Corne University
- Lunar Derby
 - Achieve Lunar Orbit
 - S/C Longevity

CU-E3

- Academic Team University of Colorado at Boulder
- Deep Space Derby
 - Best Burst Data Rate
 - Largest Data Volume
 - Farthest Comms
 Distance
 - S/C Longevity

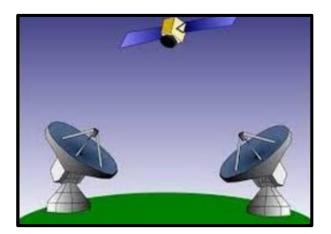
Team Miles

- Industry TeamGroup of "citizen innovators" centered in Tampa, FL.
 - Deep Space Derby

•

 Farthest Comms Distance

CubeQuest Challenge


THE TECHNOLOGIES

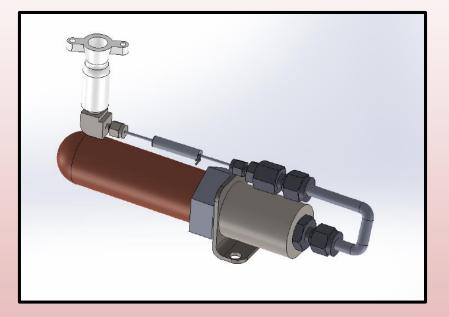
Technologies CubeQuest Teams need to succeed:

Propulsion

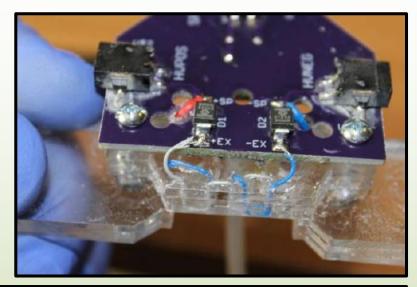
Communication

Deep Space Hardiness

SmallSat 2017

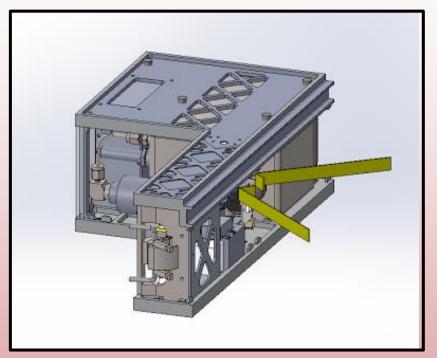

Propulsion – CisLunar Explorers

- In-house Water
 Electrolysis System
 - Inert, dense, simple operation, high ΔV
- Design ΔV: 417 m/s
- Holds 940 cc of propellent
- 3D-printed Ti Nozzle


Propulsion (ADCS) – Cislunar Explorers

- In-house CO2 system for reorientation operations.
- COTS Fuel tank, solenoid, nozzle and puncture device

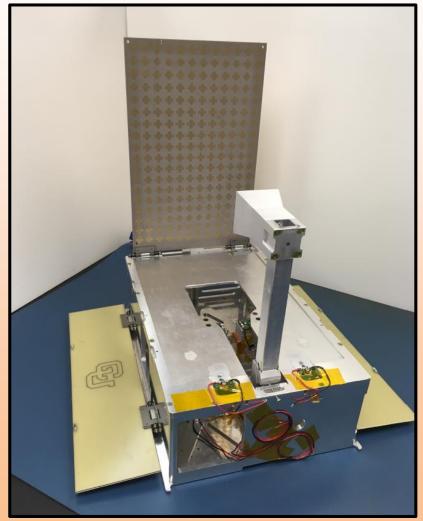
Propulsion – Team Miles


- ConstantQ plasma thrusters
 - Iodine propellant
 - 12 total thruster units
 - Thrusters are canted, used for both primary prop and RCS

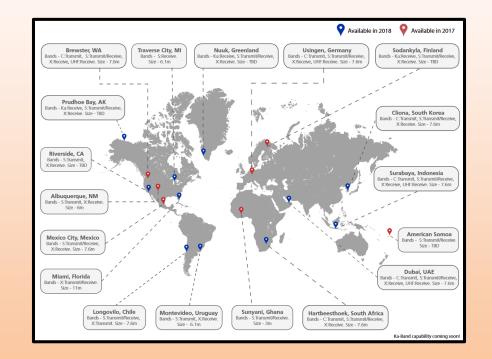
Comunications (Radio) – Cislunar Explorer

- UHF (70cm band)
- Deployable tape measure half-wave dipole antenna
- AX5043 AXSEM/ON Semi Transceiver
- In-house RF power amplifier
- Raspberry Pi Flight Computer

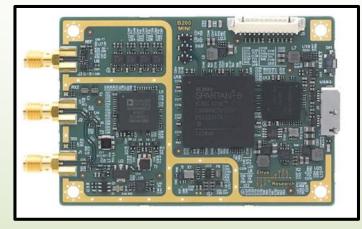
)5AUG2017

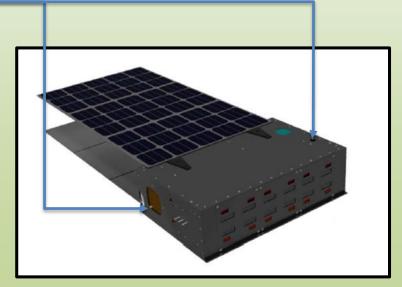

Communications (Ground Station) – Cislunar Explorer

- Main Ground Station on campus at Cornell
 - Ability for 8hr/day access
- 60ft antenna at WFF for tracking
- S/C Tx even when not LOS to GS – Amateur Radio operators can receive transmissions


Communications (Radio) – CU-E3

- X-band Tx
 - In-house Transmitter
 - In-house deployable
 Reflectarray with Feed
 Horn
- C-band Rx
 - C-band converted to UHF
 - AstroDev Li-1 UHF radio
 - 1 C-band patch antenna array


Communication (Ground Station) – CU-E3


- ATLAS Ground Station
 - CU-E3 plans to use the ATLAS network for all satellite communications,
 - including Telemetry, Command and Tracking

Communications (Radio) – Team Miles

- S-band
 - Ettus USRP B200mini
 Software Defined Radio
- Dual Patch Antennas
 - 180° placement for full coverage of S/C
 - 4 hr/day coverage during operations phase

Communications (Ground Station) – Team Miles

- DSN
 - DSN currently plans to use DSN for S/C tracking
 - DSN has offered free tracking servies for the CubeQuest EM-1 payloads
 - Team Miles may also contract with DSN for Tx/Rx if necessary
- ATLAS
 - Team Miles has contracted with ATLAS to provide S/C Tx/Rx if necessary

Additional Technology Paths to Mission Success – CU-E3

Non-propulsive Deep Space ADCS

- CU-E3 does not carry any propulsion, and is outside the Earth's magnetic field
- Modified BCT ADCS solution
 - Reaction wheel saturation will be avoided by maneuvering the S/C in such a way to utilize Solar Radiation Pressure to aid in rotation (counter-torques)

Additional Technology Paths to Mission Success – Team Miles

Radiation

- Team Miles has TID tested prototypes of all major circuit boards
 - Including the In-House designed flight computer (RACP)
- Testing provides confidence in S/C's ability to survive >4M km away from Earth (goal: 7.7M km)

Resilient Affordable CubeSat Processer (RACP)

- In-house designed flight computer
- ARM processers mixed with rad-tol microcontrollers to provide fault tolerance

- SLS is scheduled to launch in 2019
- In-space Competitions end 365 days after SLS Launch
- Teams with 3rd party launches have one year from launch to achieve mission and prize objectives or SLS Launch T+365 days, whichever is sooner

The End – Until Next Time

