

Food Production for Space Exploration

* PROCE PLANT BIOLOGY * VECCO AND A Stronger Mutrition

Exploration Research and Technology Programs

> Gioia Massa Project Scientist NASA, Kennedy Space Center

Space Food Production

- Goal: To produce <u>safe</u>, <u>nutritious</u>, <u>appealing</u> food to supplement a stored diet
 - As mission duration increases, a greater percentage of the diet might be produced
- Key Factors:
 - Production in controlled environments
 - Any solar light reduced and indirect
 - High CO_2 levels likely (ISS \geq 3000 ppm)
 - Common environments for multiple crops
 - Crop scheduling is critical
 - Power, mass, volume, and crew time must be minimized
 - Sustainability minimizing waste, nutrient recycling
 - Biotic stresses carried from Earth, mutation
 - Abiotic stresses related to micro or fractional gravity
 - Opportunities:
 - Designer plants for space growth and nutrition
 - Automation
 - In Situ Resource Utilization (Regolith, CO₂, water)

FARMING ON THE MOON

©T.C.G.

PRINTED IN U.S.A.

Farming on the moon will be mostly done 'indoors,' under a large plastic dome. Carbon Dioxide will be pumped in and sunlight will pour down on the plants. Special types of plants will be developed to give high energy foods to compensate for the pioneers' lack of meat. Certain plants like strong cactus that can withstand the blistering rays of the sun, will be able to grow 'outdoors' on the moon. See Card No. 62—MOON TRAINS

TARGET: MOON

Plant Factories

South Pole Greenhouse

Photo from "On the Ice" Blog of Russ Durkee

The International Space Station

Designed and built by ORBITEC

Example crops tested in plant pillows

Crop Selection for VEG-01

- Reliable germination
- Rapid growth
- Attractiveness
- Low native microbial levels
- Palatability / acceptability
- Antioxidants

VEG-01 consisted of two sets of 'Outredgeous' lettuce and one set of 'Profusion' zinnia pillows

'Outredgeous' red romaine lettuce

'Profusion' Zinnia

Veg-01 initiation

Veg-01 wick opening (3 DAI)

Veg-01 on-orbit wick opening assisted seedling growth (3 days after initiation)

Veg-01 plant thinning (7 DAI)

Veg-01 on-orbit plant thinning operation eliminated competition for resources

Veg-01 plant thinning (7 DAI)

Veg-01 on-orbit plant thinning operation eliminated competition for resources

- Pillow B did not germinate
- 5 pillows contained seedlings

Veg-01 water stress

Veg-01 on-orbit plants exhibited low water response characteristics. Water was added directly to pillows to ensure water availability for the seedlings.

Veg-01 water stress

Plants in pillows A and C grew well Plants in pillows D, E, and F exhibited stunting and water stress D ultimately recovered and E and F died

Veg-01 Harvest (33 DAI)

Veg-01 Harvest

Veg-01 Second Crop

- Modified watering procedures, increased photo frequency
- Initiated by Scott Kelly on July 8, 2015 from seeds previously sent
- Grown by Scott Kelly and Kjell Lindgren
- Water stress observed but astronauts intervened and grew 5 plants
- ¹/₂ the produce for consumption, ¹/₂ for science
- Plants harvested Aug. 10, 2015, live on NASA TV
- Science samples frozen and returned May, 2016.

Sanitizing Produce

Astronaut Comments

Scott Kelly

- the logistical complexity of having people live and work in space for long periods
- the supply chain that is required
- For Mars, need a space craft that is more self-sustainable with regards to its food supply

- Kjell Lindgren
 - benefit of eating the fresh food
 - contribution that plants have to the ISS ecosystem
 - psychological benefit it's really fun to see green growing things in the sterile environment of the ISS

Veg-01 Third Crop - Zinnia

- Directly watered plants after initiation, decreased photos to reduce crew time demands
- Initiated on Nov. 16, 2015 from seeds previously sent
- Grown by Kjell Lindgren and Scott Kelly
- Plants received too much water; fungus developed
- Mitigation attempted but several plants were lost before flowering
- Autonomous gardening started in Dec.
- Plants harvested Feb. 14, 2016
- Samples frozen and returned May, 2016

Water Issues / Consequences

Guttation and Leaf Curling

Fungal Development & Abnormal Growth

And they bloomed, and bloomed...

Zinnia Action Shots

90 DAI: Harvest on February 14, 2016

Valentine's Day Bouquet on the ISS

VEG-03A Cut-and-Come-Again

VEG-03 Cut-and-Come-Again

VEG-03 D – Mixed Crop Tests

Veg-03D - Mixed Crop Tests

Next Up - A Tale of Two Veggies

Thank you!

- Veggie and VEG-01 teams at KSC and ORBITEC
- Astronauts Steve
 Swanson, Rick
 Mastracchio, Scott
 Kelly, Kjell Lindgren,
 Shane Kimbrough,
 Peggy Whitson, Jack
 Fischer, Joe Acaba
- Payload Operations and Integration Center

 NASA's Space Life and Physical Sciences, ISS
 Program, Human Research
 Program

Just Installed! NASA's Advanced Plant Habitat