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ABSTRACT 

NASA collects, processes and distributes petabytes of Earth 
Observation (EO) data from satellites, aircraft, in situ 
instruments and model output, with an order of magnitude 
increase expected by 2024. Cloud-based web object storage 
(WOS) of these data can simplify the execution of such an 
increase. More importantly, it can also facilitate user 
analysis of those volumes by making the data available to 
the massively parallel computing power in the cloud. 
However, storing EO data in cloud WOS has a ripple effect 
throughout the NASA archive system with unexpected 
challenges and opportunities.  One challenge is modifying 
data servicing software (such as Web Coverage Service 
servers) to access and subset data that are no longer on a 
directly accessible file system, but rather in cloud WOS. 
Opportunities include refactoring of the archive software to 
a cloud-native architecture; virtualizing data products by 
computing on demand; and reorganizing data to be more 
analysis-friendly.  

Index Terms— Cloud computing, archive, architecture, 
data analytics 

1. INTRODUCTION 

NASA collects and processes increasingly large volumes of 
Earth Observation (EO) data from satellites, aircraft, in situ 
instruments and model output.  NASA’s Earth Observing 
System Data and Information System (EOSDIS) is 
responsible for archiving the data and distributing them to a 
variety of end user communities, including science 
researchers and applied science users [1].  EOSDIS EO data 
archives comprise 12 Distributed Active Archive Centers at 
a variety of locations in the United States who save the data 
mostly on on-premise disk arrays, with some tape storage. 
These archives are knitted together by a Common Metadata 
Repository of metadata at the data collection and file level, 
which allows a search client to search across all 12 DAACs 
using a single database.   

Since the turn of the century, the data volume archived 
in has increased 400-fold, to approximately 25 PB in 2017. 
An additional order of magnitude increase is expected by 
the year 2024 (Fig 1). Just as important, EOSDIS distributes 
an annual data volume that is of the same order of 
magnitude as its cumulative archive volume. 

 
FIGURE 1. HISTORICAL AND PROJECTED 
CUMULATIVE ARCHIVE VOLUME IN EOSDIS. 
(YEARS RUN FROM OCTOBER TO SEPTEMBER.) 

Cloud-based storage simplifies the ramp-up to handle such 
large volume increases. It obviates the need to specify and 
procure large amounts of hardware, plus many of the 
ancillary activities required, such as allocating (or build out) 
precious raised floor space, tracking property items, 
upgrading cooling systems, and upgrading internal 
networks. Also, the diversity of the community served by 
major cloud vendors has led to a variety of storage options 
with different latency, throughput and access options 
balanced against the respective costs. 

However, while modest cost savings may be achievable 
by using cloud storage over on-premise storage, the real 
potential arises in the proximity of enormous computing 
power “next to” the cloud storage. In theory, science 
researchers using the data could now apply data-parallel 
processing to analyze data volumes that would simply be 
too big to download and analyze with their own hardware. 
Another potential advantage is that having so many data 
collections in one virtual “place” lends itself to more multi-
data-collection studies; these are a particular feature of Earth 
Observation studies which often meld data from multiple 
sources based on satellites, aircraft, in situ and model 
outputs. In reality, the data are often physically separate in 
cloud storage, but the high-bandwidth interconnects within 
clouds mitigate this distance. 



2. ARCHIVING EO DATA IN CLOUD STORAGE 

For the above reasons, NASA is exploring a variety of 
prototypes using public cloud to archive and distribute EO 
data.  Several of the prototypes use Web Object Storage 
(WOS) for data archiving in the form of Amazon Web 
Services Simple Scalable Storage (AWS S3). The 
prototypes identify the business and operational implications 
of archiving data in the cloud, as well as demonstrating 
some of the potential benefits from cloud-based archives. 

The core prototype in this suite, named Cumulus, is 
developing a science archive hosted in the public cloud. 
Rather than lift and shift an existing archive software system 
from within EOSDIS, a conscious decision was made to 
employ cloud-native architecture and services in the 
prototype. This enabled an architecture centered on AWS 
Lambda functions triggered by the arrival of data notices, 
and orchestrated through Step Function workflows. As a 
result, the workflow aspect is handled largely by cloud-
provided services, with the result that most of the custom 
code is focused on the “business logic”, in this case the 
ingest and processing of different EO science products.  The 
ideal would be to have custom code only for the specific 
business logic, with cloud services supplying the software 
infrastructure. 

One impact of storing the data into S3 is the egress cost 
of distributing data out of the cloud, which is exacerbated by 
the short-term uncertainty of user-requested egress. A traffic 
rate shaper can mitigate this, taking care to not impact user 
access unduly. On the other hand, transferring data from 
WOS to a compute node in the same cloud region does not 
incur egress cost, incentivizing users to make the paradigm 
shift toward analyzing data in place (or nearby), rather than 
downloading to a local machine. 

This also incentivizes the archive to offer a number of 
data reduction services to aid the user in preprocessing the 
data and decreasing the volume that might be transferred out 
of the region. Currently, EOSDIS offers several subsetting 
services, particularly based on the Open-Source Project for a 
Network Data Access Protocol (OPeNDAP) [2]. Other 
services to support custom subsetting, regridding, 
reprojection, quality screening and mosaicking are offered 
for certain data products. Most of these services are 
designed to run on a host with attached storage in the form 
of a POSIX filesystem. Instead, Web Object Storage offers 
data through the Hypertext Transfer Protocol. Thus, one of 
the prototypes employs a form of OPeNDAP server that can 
serve data in Web Object Storage. 

Another novel aspect of archiving data in the cloud is 
that costs accrue so long as the data rest in storage, which 
can add up to significant expenditures over time. One 
approach to address this is to virtualize some of the high-
volume data and produce them on demand. This strategy 
was previously employed in serving MODIS Calibrated 
Radiance data during the transition of EOSDIS from mostly 
tape to mostly disk in the mid 2000’s.  However, once disk 
prices had dropped enough to afford to put the MODIS 
Calibrated Radiance on disk, this strategy was largely 
phased out, due to the relatively large latency of on-demand 
production to simply serving from disk.  However, while 
large on demand requests may be painfully slow for big 
requests on current computer systems, the ability to access 
hundreds or thousands of compute nodes at once in the 
cloud could conceivably shrink the response time to be 
almost indistinguishable from serving the data from storage. 
At that point, it becomes a tradeoff between the cost of 
compute cycles needed to make virtual products vs. the 
storage cost.   

The broad ecosystem of cloud services to fulfill 
common functions provides another opportunity. In the 
course of prototyping, we can refactor the archiving 
software system to use off the shelf services, such as queues, 
databases, and workflow support services to dramatically 
reduce the code base.  

3. SUPPORTING CLOUD ANALYTICS 

Ultimately, the “killer app” for archiving in the cloud is to 
support analytics using the massively parallel capabilities 
offered by cloud computing.  This has a particularly wide 
variety of solutions being explored in the community.  Most 
of them involve sharding data across a large number of 
nodes to enable parallel computing. The sharding solutions 
include highly distributed databases (e.g., Cassandra [3]), 
highly distributed filesystems (e.g., Hadoop File System [4]) 
or in some cases simply dividing data up amongst many 
WOS buckets.  These can be paired with an equally varied 
set of computational technologies (e.g., Spark [5]).  Cloud 
prototypes are underway to develop end-to-end 
demonstrations of such systems, with three main aims:  (1) 
to determine feasibility and operability; (2) to demonstrate 
to the science community what can be accomplished with 
cloud computing near the data; and (3) to determine the 
possible impacts on the archive architecture. 



One common factor among most of these analysis 
technologies is that they usually require reorganizing and 
reformatting the data in order to store them in a highly 
distributed database or filesystem. These forms of analytics-
optimized data storage typically have different performance 
characteristics when paired with appropriate corresponding 
analytics frameworks. Unfortunately, it is not yet clear if 
there is a universal optimum combination of analytics 
optimized storage and analytics frameworks with respect to 
cost and speed. The optimum may depend on the data 
characteristics, the analysis algorithm, and the user’s 
specific use case, say, data exploration vs. in-depth analysis.  
Therefore, we are developing an architectural concept that 
abstracts the main steps in the analysis process, presenting 
them to the world as services:  this will provide a common 
framework that can accommodate different components for 
different combinations of data and use cases (Fig. 2). 

A typical end-to-end analysis begins with extraction of 
the necessary data variables for the spatial and temporal 
Region of Interest from the Cumulus Web Object Storage.  
A Common Metadata Repository stores the essential 
metadata that allow us to generalize this process to work 
with many types of data in EOSDIS. This is followed by 
optional data transformation steps, which may include 
quality filtering, regridding, and/or aggregation over time, 
space or variables. This corresponds to the “Transform” of 
the common Extract-Transform-Load process in analysis 
pipelines. The data are then stored in an analytics-optimized 
storage framework such as Parquet, HDFS, or Cassandra. 
The next step provides a set of summary statistics that are 
commonly used in the EOSDIS user community, usually 
involving an averaging over latitude, longitude, or time. 
Based on the remaining dimensions in the data, this is 

followed by visualization. This overall flow is exemplified 
by the Geospatial Interactive Online Visualization ANd 
aNalysis Infrastructure (Giovanni) [6], a current EOSDIS 
on-premise tool currently being ported to the cloud. 
Giovanni serves over 1700 data variables to a user base 
measured in the tens of thousands. 

The abstracted architectural concept for archive-
proximal analysis in Fig. 2 follows the cloud computing 
pattern of exposing each key element as a service. This 
produces several salutary effects. First and foremost, it 
makes for an open system, one that allows a variety of 
analysis system developers to plug into the system at any 
step in the process. Similarly, it can serve an even wider 
diversity of users than the monolithic on-premise analysis 
solutions.  Interdisciplinary users, educational users, and 
applications users can work with the visualizations that 
provide data exploration capabilities with little user effort.  
On the other hand, research scientists who create and use 
built-to-purpose analysis can gain value from the data 
preprocessing and reorganization available via the 
Transform-as-a-Service and Analysis-Ready Data as a 
Service.  Analysis Ready Data have been promoted by the 
Committee on Earth Observing Satellites as “are satellite 
data that have been processed to a minimum set of 
requirements and organized into a form that allows 
immediate analysis with a minimum of additional user effort 
and interoperability both through time and with other 
datasets”[7]. Note also that the data volume generally is 
smaller on the right side of the pipeline, with summary 
statistics and their visualizations usually representing a 
small fraction of the original volume from which they were 
generated. Thus, it is still important for egress charge 
reasons for end users to be able to easily apply their own 

FIGURE 2. ABSTRACTED PIPELINE FOR DATA ANALYTICS IN THE CLOUD. 



analyses on transformed and analysis-ready data within the 
cloud. On the other hand, there is little penalty to 
distributing summary statistics and visualizations to users 
outside the cloud. 

One challenge of this architecture is that archives are 
hesitant to abandon the data format as received from the 
provider, implying that they will likely manage two or more 
copies in different forms. However, it may be cost 
prohibitive to keep the reorganized version on fast, 
expensive storage needed for high performance indefinitely.  
This is particularly the case when a clear winner in price per 
performance for different data storage technologies is still 
up in the air. This implies that strategies and mechanisms 
will be needed for deciding which data to make available in 
the analytics optimized form, and for how long. These 
strategies need to be flexible enough to adapt to the ever-
changing cost and capabilities on offer by commercial cloud 
providers. 

4. CONCLUSIONS 

The heightened interest in Big Data in the larger business 
community has spawned an increase in off-the-shelf 
services that are useful for managing and processing data.  
Managing Big Data in Earth Observation archives can 
benefit from adopting many of the resultant capabilities. 
There are many challenges in pivoting from storing data on 
on-premise hardware to storing them in the cloud. However, 
there are at least as many opportunities to leverage the co-
location of massive processing power near enormous 
storage resources in order to perform science analysis on 
larger datasets than ever before, as well as faster than ever 
before. Recognizing the significant (but sometimes subtle)  

differences in cloud archive management continues to drive 
prototype development in NASA Earth Science systems to 
explore the opportunities and mitigate the risks inherent in 
such a major evolutionary change in archive architecture. 
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