
1111111111111111111inumuu~
(12) United States Patent

Maluf et al.

(54) SYSTEM FOR PERFORMING SINGLE
QUERY SEARCHES OF HETEROGENEOUS
AND DISPERSED DATABASES

(71) Applicant: The United States of America as
Represented by the Administrator of
the National Aeronautics & Space
Administration (NASA), Washington,
DC (US)

(72) Inventors: David A. Maluf, Mountain View, CA
(US); Mohana M. Gurram, Sunnyvale,
CA (US); Christopher D. Knight,
Santa Clara, CA (US); Takeshi
Okimura, San Jose, CA (US); Vu
Hoang Tran, San Jose, CA (US); Anh
Ngoc Trinh, San Jose, CA (US)

(73) Assignee: The United States of America as
Represented by the Administrator of
NASA, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 384 days.

(21) Appl. No.: 13/956,929

(22) Filed: Aug. 1, 2013

Related U.S. Application Data

(60) Provisional application No. 61/678,577, filed on Aug.
1, 2012.

(51) Int. Cl.
G06F 17/30 (2006.01)
G06F 17/27 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30554 (2013.01); G06F 17/2705

(2013.01)

User API Processing
Interface Computer

Search
Component

Search Query Component
47 OhieM Relate

Component

Logical
operations
processor

100_f

(io) Patent No.: US 9,824,128 B1
(45) Date of Patent: Nov. 21, 2017

(58) Field of Classification Search
CPC G06F 17/30545; G06F 17/30566; G06F

17/30893; G06F 17/3053; G06F
17/30525; G06F 17/30592; G06F

17/30991; G06F 17/2705
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,233,586 131 * 5/2001 Chang et al
6,519,618 131 * 2/2003 Snyder G06Q 10/10

707/738
6,704,720 132 * 3/2004 Arai et al 707/749
6,968,338 131 11/2005 Gawdiak et al.
7,366,735 132 4/2008 Chandrasekar et al.

(Continued)

OTHER PUBLICATIONS

Dictionary.com "flat file database," in The Free On-line Dictionary
of Computing. Source location: Denis Howe. http://dictionary.
reference.com/browse/flat-file-database. Accessed: Mar. 2, 2016.*

(Continued)

Primary Examiner Robert Beausoliel, Jr.

Assistant Examiner Arthur Ganger

(74) Attorney, Agent, or Firm Christopher J. Menke;
Robert M. Padilla; Mark P. Dvorscak

(57) ABSTRACT

The present invention is a distributed computer system of
heterogeneous databases joined in an information grid and
configured with an Application Programming Interface
hardware which includes a search engine component for
performing user-structured queries on multiple heteroge-
neous databases in real time. This invention reduces over-
head associated with the impedance mismatch that com-
monly occurs in heterogeneous database queries.

25 Claims, 5 Drawing Sheets

Context Registrar
Field Computer

Database

20I

Unstructured
Database

202

88
Structured
Database

203

Semi-
Struetured
Database

US 9,824,128 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,478,100 B2 1/2009
7,487,146 B2 * 2/2009
7,499,915 B2 3/2009
7,797,381 B2 9/2010
7,801,876 B1 * 9/2010
8,195,690 B2 6/2012
8,209,352 B2 6/2012
8,874,545 B2 * 10/2014
9,031,926 B2 * 5/2015
9,053,149 B2 * 6/2015

2006/0004739 Al* 1/2006
2012/0192096 Al* 7/2012

2014/0229462 Al * 8/2014

2014/0324835 Al * 10/2014

2016/0140254 Al * 5/2016

Murthy et al
Friedman G06F 11/3438
Chandrasekar et al.
Zhang et al.
Riley et al 707/706
Hou et al.
Murthy et al.
Gutlapalli et al 707/707
Milward et al 707/706
Ebenstein G06F 17/30451
Anthony G06F 17/30587
Bowman G06F 3/0481

715/780
Lo G06F 17/30528

707/707
Schiller G06F 17/30991

707/722
Yan G06F 3/0484

715/771

OTHER PUBLICATIONS

Webopeida "flat file database," Source location: http://www.

webopedia.com/TERMJF/flat_file database.html. Accessed: Mar.

1, 2016.*
Maluf, et al., An Extensible "Schema-less" Database Framework for
Managing High-throughput Semi-Structured Documents, Jan. 2,
2002.
Maluf, et al., Netmark: A Schema-less Extension for Relational
Databases for Managing Semi-Structured Data Dynamically, Foun-
dations of Intelligent Systems Lecture Notes in Computer Science,
Proceedings of the 14th International Symposium, ISMIS 2003,
Oct. 28-31, 2003, 231-241, 2871, Maebashi City, Japan.
Maluf, et al., An Extensible "Schema-Less" Database Framework
for Managing High-Throughput Semi-Structured Documents, May
19, 2003.
Lin, et al., Adding Hierarchical Objects to Relational Database
General-Purpose XML-Based Information Managements, NASA
Tech Briefs, Nov. 16, 2006.

* cited by examiner

VA

Pa
te
nt

Pa
te

nt
 H
or

ne
 ~

1
1
0

1
 1
 b

1
 1
 C

[S
av

ed
 S
ea

rc
he

s]
Se
ar
ch
 T
ar

a:
l
i
d

Ca
se
 N
um

be
r

fi
~R
C
14
'2

[T
AN
[]
-`

€ i
sp
la
y
Co
lu
mn
s:
 [
+A

dd
]

L.
2a
se
 N
 ~
rn

ke
r

Ge
ne
ra
l

In
fo

: U
S
 P
at
en
t
Nu

mb
er

[-
Re
mo
ve
]

(B
et

a)
 Re

la
te

 M
od

ul
es

 b
y
Ke
y:
 C
as

e
Nu

rr
ib

er
 ®

[+

Ad
d]

Te
eb

no
lo

 y

[-
Re
mo
ve
]

0
 [
+A

dd
]

Te
e{

h
TY

;l
ns

fe
f

Aw
ar
ds

Te
ch

 B
ri
ef

1
2
b

So
ft
wa
re
 R
el

ea
se

[E

xp
or

t
To
 C
S
C

Su
cc

es
s
St

or
y

1
2

FM
S

FO
PS

Ai
Va
iv
er

1
2
a

FI
G.

VA

Pa
te
nt

Pa
te
nt
 H
om

e
I

Se
ar
ch
 T
er

m:
.1

10

Pa
te
nt
 N
ot
es

Ab
st
ra
ct
ll
nn
ov
at
or
s:
 P
at
en
t A

bs
tr

ac
t

As
si
gn
me
nt
s,
'
ic

en
se

: A
ss
ig
no
r
Na

me
As

si
gn

me
nt

s,
 i
ce

ns
e:

 C
op

yr
ig

ht
 G
o
um

en
t
No

.
As

si
gn

me
nt

s,
 i
ce

ns
e:

 C
op

yr
ig

ht
 V
ok

'i
me

 N
o.

As
si

gn
me

nt
sl

l_
ic

en
ti

c:
 C
op

yr
ig

ht
 D
at
e
As

si
gn

or.
As

si
gn

me
nt

si
-i

ce
ns

e:
 Co

py
ri
gh
t:
 G
at

e
Re
ce
iv
ed

As
si

gn
rn

en
ts

lt
_i

ce
ns

e:
 C
op
yr
ig
ht
:
Ga

te
 R
ec

or
de

d
As

si
gn

 me
nt

sl
Li

ce
ns

e:
 Co

py
ri
gh
t:
 G
at

e
Re

qu
es

te
d

Co
py
ri
gh
t
In
fo
rm
at
io
n:
 C
on
tr
ac
t
Re
qu
es
te
d
Pe

rm
is

si
on

 t
o A

ss
et

 C
op
yr
ig
ht

Co
py
ri
gh
t
In

fo
n- n

at
io

n:
 C
op
yr
ig
ht
 h
as
 b
ee

n
da

te
Co
py
ri
gh
t
In

fo
rr

na
ti

cn
: C

op
yr
ig
i- i

t h
as
 b
ee

n
Ca
 y

ri
cd
ht
 I
nf
or
ma
ti
on
:
Re

gi
st

rm
io

n
Sa

te
Co

py
ri

gh
t
In
fo
rm
at
io
n:
 R
eq
ue
st
ed
 w
as

Co
py
ri
gh
t
In
fo
rm
at
io
n:
 R
eq
ue
st
ed
 w
as

 d
at

e
Ge
ne
ra
l

In
fo
: N
T
R
 T
it
le

Ge
ne

ra
l

In
fo
: A
ba
nd
on
ed
 G
at

e

`l
.

1
 _f

ib

1
1
C

[S
av
ed
 S
ea
rc
he
s]

nt
ai
ns

A
R
C-

14
7e

;T
AN

G]

[-
Re

mo
ve

]

1
 l
 d

[+
Ad

d]

VA

VA

FI
G.

U.S. Patent Nov. 21, 2017 Sheet 5 of 5 US 9,824,128 B1

200

Instantiating query
object

Mapping user-
defined schema to a

heterogeneous
database

Performing a search

Updating user interface
to display search

Step I

-- Step 2

Relating the search to results in another
heterogeneous database:

OR

Step
5a ---

Defining a
relationship

between databases
using search key

,process

FIG.

Involving logical
operations
processes

Step 3

Step 4

— Step 5

Step
5b

US 9,824,128 B1

SYSTEM FOR PERFORMING SINGLE
QUERY SEARCHES OF HETEROGENEOUS

AND DISPERSED DATABASES

CLAIM OF PRIORITY

This patent application claims priority to U.S. Provisional
Patent Application No. 61/678,577, filed on Aug. 1, 2012.

ORIGIN OF INVENTION

The invention described herein was made in the perfor-
mance of work under National Aeronautics and Space
Administration (NASA) contracts and by employees of the
United States Government and is subject to the provisions of
Section 20135(b) of the National Aeronautics and Space Act
of 1958, Public Law 111-314, §(124 Star. 3330, 51 U.S.C.;
Chapter 201) and 35 U.S.C. §202, and may be manufactured
and used by or for the Government for governmental pur-
poses without the payment opf any royalties thereon or
therefore.

FIELD OF INVENTION

The present invention is a distributed computer apparatus
and system and method for performing a search of multiple
highly distributed heterogeneous databases containing struc-
tured, semi-structured and unstructured data during a single
search session.

DESCRIPTION OF THE PRIOR ART

Government and private enterprises are highly dependent
on distributed databases used for operations management
and research and analytics. For example, the National Aero-
nautics and Space Administration (NASA) and its contrac-
tors maintain hundreds of databases that store millions of
records. These databases include diverse document file-
types having thousands of explicit and implicit structures.

The Impedance Issue: Matching User Applications
to Databases

"Impedance" is a term used to describe a significant
problem known in the art faced by database programmers
and application developers. Impedance is a mismatch
between user-interface programming languages (e.g., Java
and C++) and the logical language structure of most data-
bases user interface applications may query.

Most databases use the "relational" database model. The
relational database model uses a collection of tables to store
and retrieve data. During a search, a "primary key" and a
"foreign key" are used to correlate data between tables and
return a search result.

In contrast, most application programming languages use
the "semantic" or "object oriented" programming language
model in which terms are assigned meaning within the
context of a particular computer program. For example, a
programmer creating a financial API may select terms
(called objects) such as "customer," "product," "credit
limit," or "net sales" and assign them meanings and prop-
erties.
The object-oriented terms of the semantic model do not

logically interface with relational database architectures.
Semantic and relational database models have little in com-
mon and have historically been developed in isolation from
one another.

2
Consequently, programmers are required to write large

and complex amounts of object-to-relational mapping code
in order to convert data to a tabular format the database can
understand. Likewise, the developers must convert the rela-

y tional information returned from the database into the object
format developers require for their programs. Commercial
enterprise database management systems (DBMS), which
have an integrated hybrid cooperative approach to an object-
relational model, are known in the art. NASA and other

to researchers have engaged in considerable research to
address this problem.

Extensible Markup Language (XML) is a "markup" lan-
guage used to incorporate object-oriented programming

15 features into traditional relational database systems. Data-
base information is still stored within relational tables, but
some of the tables may include objects with properties found
in the object oriented programming languages. XML is an
important component for maintaining an information grid of

20 heterogeneous computer databases for NASA known as the
GXD framework.

The GXD Framework Model

25 The GXD Framework utilizes existing international pro-
tocol standards of the World Wide Web Consortium Archi-
tecture Domain, and the Internet Engineering Task Force,
primarily HTTP, XML and WebDAV. Through a combina-
tion of these international protocols, universal database

30 record identifiers and physical address data types, GXD
enables an unlimited number of desktops and distributed
information sources to be linked seamlessly and efficiently
into the information grid.
One of the features of GXD is that it allows data to be

35 viewed on the heterogeneous databases through an intercon-
nected set of data nodes. A node is a logical unit of
information. NASA's GXD Framework provides data man-
agement, storage, retrieval, and discovery function by trans-
forming large quantities of highly heterogeneous data for-

40 mats into a common XML-based standard.

Performing Complex Queries on Hetrogeneous
Document Formats

45 The NASA Technology Transfer System (NTTS) is a
software application which provides support for users of the
GXD framework including: (1) user and programming inter-
faces; (2) information bus software; (3) daemon processors;
(4) GXD search functions; and (5) a set of extensible

5o application programming interfaces (APIs).
Like the GXD framework, NTTS requires a processor

which converts data to an XML format. As the data is saved
in XML format, the GXD Framework parser stores the
content in a connected node structure in a "schema-less"

55 database.
It is desirable to allow users to efficiently query distrib-

uted heterogeneous databases joined by URLs in an infor-
mation grid without the need to convert data from each
database to an XML format.

60 It is further desirable to provide users with the capability
to abstract and view a relevant subset of fields contained in
the thousands of data fields found in a heterogeneous
dataset.

It is further desirable to have an industry-standard API for
65 users to access information grids comprised of heteroge-

neous databases and to develop industry specific research
solutions.

US 9,824,128 B1

3
It is further desirable to have a standard API for querying

information grids which can be collaboratively developed by
the government and private sector.

Terms of Art

As used herein, the term "API processing computer"
means a computer or plurality of computer hardware com-
ponents on which an API is run.
As used herein, the term "application programming inter-

face" ("APP') refers to a protocol used as an interface by
software components to communicate with other software
components.
As used herein, the term "connected node structure"

means units of information searched within an information
grid.
As used herein, the term "context field" means a field

associated with a document tag or any code identifying any
feature or content of any document.
As used herein, the term "distributed computer apparatus"

means a system of interactive of hardware components
whether on the same computer or geographically separated.
As used herein, the term "document tags" means code

associated with any content or identifying feature of a
document which is potentially searchable, indexable or
retrievable.
As used herein, the term "information grid" means com-

puters operatively connected for searching.
As used herein, the ̀ join processor" means a processor

which merges two or more search results during a single
search session.
As used herein, the term "key" or "search key" means any

alphanumeric symbol or character (singly or in combination)
which may be used to query tables, nodes, objects, the icon
or symbol used to make an inquiry.
As used herein, the term "logical operations processor"

means a processing component capable of filtering data
based on any logical process known in the art.
As used herein, the term "markup language" refers to a set

of rules for encoding documents in a format that is human
readable, called a schema. An example of markup language
includes, but is not limited to, XML.
As used herein, the term "multiple search query proces-

sor" means a processor which merges queries performed
during multiple search sessions.
As used herein, the term "plurality" means the quality of

having more than one.
As used herein, the term "processor" or "processing

component' means a hardware component with processing
capability to transform data structures.
As used herein, the term "quasi-unique search" means

created in real time based on data entered by a particular
user.
As used herein, the term "query processor" means any

hardware component for processing a query object, data
record or user-defined schema and producing a set of query
results.
As used herein, the term "search query object' means any

software object or data structure which contains objects,
properties or functions for performing a search of one or
plurality of heterogeneous databases, including but not
limited to user-defined schema value.
As used herein, the term "real time" means during a single

user-defined search session.

4
As used herein, the term "registrar computer" means a

computer or data storage component which contains infor-
mation related to locating and querying a plurality of het-
erogeneous databases.

5 As used herein, the term "schema-less" or "schema-less
database" means the absence of schema relationships which
have been defined by programming at the database level.
As used herein, the term "semi-structured documents"

refers to a set of database documents containing both

10
database documents that are organized according to a data
model and database documents that are not organized
according to a data model. Semi-structured documents con-
tain a mixture of structured data, such as data that has been
tagged using a markup language, and unstructured data that
has not been tagged, or otherwise identified or organized.

15 As used herein, the term "structured documents" refers to
a set of documents in which the documents are organized
according to a defined data model with rules or conventions.
As used herein, the term "tag relationship comparison

processor" means a processor that returns a result based on
20 a user-defined relationship between tags.

As used herein, the term "unstructured documents" refers
to a set of documents in which the database documents are
not organized according to a defined data model with rules
or conventions.

25 As used herein, the term "user-defined schema" means
schema defined by the user to identify relationships between
categories of data or entities in a plurality heterogeneous
databases. The system may further define implicit relation-
ships based on user-defined schema.

30 As used herein, the term "user entered query context
value" means a value selected by a user which corresponds
to at least one document tag in at least one heterogeneous
database within a heterogeneous database query system.

35 SUMMARY OF THE INVENTION

The present invention relates to the creation of a query
database comprised of a plurality of database queries of
databases containing structured, unstructured, and semi-

40 structured documents. The present invention is configured to
connect to a plurality of heterogeneous databases compris-
ing: structured, unstructured, and semi-structured docu-
ments; receive a search query; and search said databases.
The search query comprises a database context, a logical

45 operator, and a search key. The results of said search query
are then returned to user. The system is also configured with
a relate function that can relate the results of multiple search
queries and a join function that can perform set operations
including union, intersection, and difference on the search

50 results.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic diagram of an exemplary
55 embodiment of a system for performing single query

searches of heterogenous and dispersed databases.
FIGS. 2a-2c illustrate an exemplary embodiment of a user

interface for a system for performing single query searches
of heterogenous and dispersed databases.

60 FIG. 3 illustrates a high-level flow diagram, showing the
operation of a system for performing single query searches
of heterogenous and dispersed databases.

65

DETAILED DESCRIPTION OF INVENTION

For the purpose of promoting an understanding of the
present invention, references are made in the text to exem-

US 9,824,128 B1

5
plary embodiments of a system for performing single query
searches of heterogenous and dispersed databases, only
some of which are described herein. It should be understood
that no limitations on the scope of the invention are intended
by describing these exemplary embodiments. One of ordi- 5

nary skill in the art will readily appreciate that alternative,
but functionally equivalent components and configurations
may be used. One of ordinary skill in the art may deem the
inclusion of additional elements to be readily apparent and
obvious. Specific elements disclosed herein are not to be io
interpreted as limiting, but rather as a basis for the claims
and as a representative basis for teaching one of ordinary
skill in the art to employ the present invention.

It should be understood that the drawings are not neces-
sarily to scale and that processes are not necessarily dis- 15
closed in the order in which they are performed. Instead,
emphasis has been placed upon illustrating the principles of
the invention. In addition, in the embodiments depicted
herein, like-reference numerals in the various drawings refer
to identical or near identical structural elements. 20

Moreover, the terms "substantially" or "approximately"
as used herein may be applied to modify any quantitative
representation that could permissibly vary without resulting
in a change in the basic function to which it is related.

FIG. 1 illustrates a schematic diagram of an exemplary 25
embodiment of heterogeneous database system 100. In the
embodiment shown, heterogeneous database search system
100 is an integrated apparatus comprised of an API process-
ing computer 40 and a user interface 45 (which may com-
municate with each other), as well as a search query object 30
47. Heterogeneous database search system 100 further com-
prises a global context field database 60 operatively com-
municating with said API processing computer 40, and a
registrar computer 99. Within said heterogeneous database
search system 100, said registrar computer 99 may further 35
operatively communicate with an information grid 88 com-
prised of a plurality of geographically dispersed heteroge-
neous databases 201, 202, 203. API processing computer 40
may further comprise at least one logical operations proces-
sor 49, search component, relate component, and/or join 40
component.

In the exemplary embodiment shown, each of the hetero-
geneous databases are "external" to the system, and are
independently created and maintained outside the system,
but are located and operatively connected to the system 45
using URL's which provide a means for locating them and
accessing their content.

Additionally, each of the exemplary heterogeneous docu-
ment formats of the heterogeneous databases are associated
with data structures and tags which are created indepen- 50
dently of any process performed by any component of
heterogeneous database system 100.

In the embodiment shown, dispersed heterogeneous data-
bases 201, 202, 203 and their associated URL's form an
information grid 88 which may be comprised of various 55
structured, semi-structured and unstructured databases and
other resources, Extensible resources may be continuously
added for searching information grid 88.

In the exemplary embodiment shown, API processing
computer 40 is connected to the plurality of heterogeneous 60
databases 201, 202, 203. The API processing computer is
also operatively connected with a global context field data-
base 60, which tracks all known context fields for all known
heterogeneous databases within heterogeneous database sys-
tem 100. 65

Heterogeneous databases 201, 202, 203 include: struc-
tured databases 201, containing structured database docu-

T
ments; unstructured databases 202, containing unstructured
database documents; and semi-structured databases 203
containing semi-structured database documents.

Structured databases 201 are comprised of database docu-
ments and data organized according to a defined data model.
An example of a structured database 201 is a relational
database organized into rows and columns with similar data
types grouped together. Apart from the organization of the
set of database documents, the data contained in any indi-
vidual database document may be organized according to a
defined data model. For example, the data in the database
documents may be tagged using a markup language (e.g.,
extensible markup language), so that individual pieces of
data in a document can be associated with a defined context
relating to that data tag.
Semi-structured databases 203 are sets of database docu-

ments containing both database documents that are orga-
nized according to a data model and database documents
that are not organized according to a data model. In various
embodiments, semi-structured database documents 203 may
contain a mixture of structured data, such as data that has
been tagged using a markup language, and unstructured data
that has not been tagged or otherwise identified or organized.

Unstructured databases 202 are sets of documents that are
not organized according to a defined data model. An
example of an unstructured database 202 is a set of database
documents stored without any method of identifying the
type of data residing on any individual document and in
which the documents are not already grouped according to
their data type.
API processing computer 40 is capable of communicating

with said plurality of heterogeneous databases 201, 202,
203, and retrieving a set of context fields stored on said
heterogeneous databases 201, 202, 203.
In the embodiment shown, heterogeneous databases 201,

202, 203 are joined into an information grid by URLs. When
API processing computer 40 connects to heterogeneous
databases 201, 202, 203 in information grid 88, API pro-
cessing computer 40 stores the identities of heterogeneous
databases 201, 202, 203 in global context field database 60.
Global context field database 60 maintains a record of all
user input with API processing computer 40 as well as a
record of all communication between API processing com-
puter 40 and heterogeneous databases 201, 202, 203.
API processing computer 40 may then store the set of

context fields retrieved from the plurality of heterogeneous
databases 201, 202, 203 in global context field database 60,
connected to API processing computer 40.
API processing computer 40 displays user interface 45,

through which a user may enter input and view output. A
user may interact with the system for performing single
query searches of heterogeneous database system 100
through user interface 45, as in the exemplary embodiment
shown in FIGS. 2a-2c.
API processing computer 40 includes various processing

components for performing heterogeneous database
searches, such as at least one logical operations processor
49, search component, relate component, and/or join com-
ponent.
In the embodiment shown, API processing computer 40 is

operatively coupled to user interface 45. In the exemplary
embodiment shown, API processing computer 40 is config-
ured with a global context field database 60 which contains
context fields and/or tags associated with all known data-
bases.
In various embodiments, API processing computer 40

may be configured to display objects belonging to classes,

US 9,824,128 B1

7
which are updated to user interface 45 to display search
options, receive search criteria and display search results.
This may include an API, including classes.

In the embodiment shown, global context field database
60 correlates the context fields to the appropriate database 5

when user specifies, or otherwise selects a context field and
search value for a query (See FIGS. 2a-2c below). Global
context field database 60 also updates the dataset of context
fields as these fields are changed or identified within the
heterogeneous databases 201, 202, 203. l0

User interface 45 is dynamically updated in real time
(during a single user session) to display available context
fields that may be organized into groups and subsets in order
to facilitate user access. 15

These groups and subsets of context fields may be rep-
resented as data structures, or within data structures. Context
fields may be represented as properties, classes, and objects
having user modifiable properties. These properties may
include properties and functions to create a user interface to 20
track search terms entered and to invoke search functions.

In the embodiment shown, various functions invoked by
API processing computer 40 allow a user to define data
schema and create search query object 47 or other data
structures, which include properties to determine queries to 25
be performed. It is a critical feature of the invention that
properties within API processing computer 40 are defined at
the application level on user interface 45 rather than pro-
grammed and/or hard-coded at the database or information
grid level. This capability allows potentially millions of 30
users to identify relevant data relationships and modify them
in real time rather than relying on more rigid, costly and time
consuming programming at the database level. This capa-
bility enables the creation of rich, complex and dynamically
updated search query object 47 to be defined by users. This 35
enables unprecedented variations in searches to perform
complex analytics without the restriction of representing
such searches in database tables.

In various embodiments, API processing computer 40 is
configured with data storage capability for saving search 40
query object 47. In various embodiments, search query
object 47 has properties and invokes functions that may be
substituted for complex database schemas and application
source code required to bind the application to the database.
In various embodiments, the capabilities of API processing 45
computer 40 can be integrated with search and retrieval
features used to manage an information grid (e.g., NASA's
GDX Framework). Data can be retrieved using the search
features incorporated into information grid 88.

User interface 45 is continuously updated as a user 50
modifies the properties of search query object 47. As a user
modifies search query object 47, search results are returned,
and the information may be displayed in real time during a
single user search session. In other embodiments, a search
session may span a single time frame or be conducted in 55
multiple time frames.

In various embodiments, API processing computer 40
may successfully update user interface 45 with a context
field list, which is a subset of context fields stored in global
context field database 60. 60

In various embodiments, user modifiable properties of
search query object 47 are originally selected and modified
by entering user-modifiable properties displayed in a user
readable format. A user readable format may include HTML
forms or other user-readable formats known in the art. 65

Heterogeneous database system 100 allows a user without
prior programming experience to search deeply within a

8
potentially large number of user selected databases without
re-formulating the searches to comply with specific search
rules for each database.
In various embodiments, user interface 45 displays menus

or other elements configured to display information to a user,
such as databases available for searching and the available
context fields which user may select in order to search each
database (See FIGS. 2a-2c below).
In various embodiments, API processing computer 40

may be configured to receive values inputted by a user,
administrator, program or database designer, to develop
customized queries necessary for complex or newly identi-
fied analytics, or for entity-specific solutions.

Values that may be entered through the use of menus, user
interface prompts, or other input methods include, but are
not limited to: database identifier values; search context
values; set operation identifiers; or any other alpha numeric
symbol or semantic identifier relevant to developing queries
or specifying results to be returned from a search of hetero-
geneous databases.
In successive queries of multiple interfaces, user interface

45 may be updated to allow a user to enter a search key or
context term based on the results of the first query in real
time during a single user session. The user can then seam-
lessly query multiple heterogeneous databases.

In the embodiment shown, API processing computer 40
and user interface 45 are configured to accept database
identifier values from a user to identify a known database
from a set of identified heterogeneous databases 201, 202,
and 203.

While performing the successive context searches, a user
may select a search key. The search key may be any search
term user inputs including, but not limited to, the set of all
alphanumerical characters. The API processing computer 40
stores the search key in search query object 47. The user may
add additional context field values, logical operators or
search keys to the search query object through continuously
updated user interface 45.
In this exemplary embodiment, search query object 47

invokes functions to update user interface 45 with the results
the query of the first data base, and return and update search
query object 47.
In one embodiment a user invokes functions of a search

query object 47 using logical operations processor 49 of API
processing computer 40. These logical functions contain
functions which may be invoked to filter the results of the
queries performed. Logical operations, which may be per-
formed by logical operations processor 49 includes, but is
not limited to, the following: logical operations, contains,
not contains, greater than, less than, greater than or equal,
less than or equal, equal to, not equal. The logical operations
performed by logical operations processor 49 limit the scope
and succession of results returned from the information grid
88. API processing computer 40 stores the set of logical
operators searched and the results produced in search query
object 47.
FIGS. 2a-2c illustrate exemplary embodiments of updated

user interface 45. In the embodiment shown, a user dynami-
cally builds a query structure at user interface level using
user-defined schema without the requirement of program-
ming by a programmer at the database level. The query
structure created by user may be stored in any data structure
known in the art.

Using the exemplary interfaces shown in FIGS. 2a-2c,
user successively identifies databases to be searched and the
relationships between context fields in each heterogeneous
database, and defines the relevant relationship between the

US 9,824,128 B1

9
various context fields available in each of structured,
unstructured and semi-structured databases.

In the embodiment shown, a user is presented with menu
options to display the available databases that may be
searched and continuously updated menus or other graphic 5

elements to cue user to select from the search terms (con-
texts) available within the collection of heterogeneous data-
bases. Using drop-down menus a user may view database
listings, context fields, and various types of set operations
displayed for selection. For example, context fields to be l0

used as search terms (e.g. keys) are selected from a menu of
available context fields in each known database.

In various embodiments, options may be modified,
supplemented or reprogrammed to reflect any context field 15
or searchable database. In still other embodiments, a user
may enter context fields or other options directly into a field.

In the embodiment shown, the search algorithms are
encapsulated into three different classes: Search, Relate and
Join. Search criteria can be combined using logical operators 20
AND, OR to provide a rich set of results.
The Search class provides the API to query individual

modules (collection of XML data) having similar schema.
The Relate class provides the API to relate search results
from one module to other modules with user-defined keys 25
(XML tag names) among modules. The Join class provides
the capability to perform set operations (union, intersection
and difference) on produced search result.
The outputs of queries may be displayed as a table. Since

the result-sets produced are interpreted as two-dimensional 30
datasets, the framework provides basic set operations like
Union, Intersection and Difference that can be performed
provided a key is defined to relate among the result-sets.

FIG. 2a illustrates an exemplary embodiment of search
query user interface 45 which is configured in order to 35
enable a user to perform a query on a first heterogeneous
database selected from a list or set of available databases
(not shown). FIG. 2a illustrates context fields lla, logical
operator field llb, and search term field llc.

In the exemplary embodiment shown, user has selected 40
"case number" in context fields lla. User has also entered
"contains" in logical operator field llb. User has entered
"ARC-1472" in search term field llc.

FIG. 2a also shows "AND" search function selector lld.
This option creates an additional row containing context 45
fields lla, logical operator field llb, and search term field
llc. This field enables a user to add an additional context
field to the current search. In the exemplary embodiment
shown, remove relate interface selector 16 allows user to
remove a currently existing context field from the current 50
search.

In the embodiment shown, context field lla includes a
drop-down menu of available context fields, which may be
searched in the "Patent' database which user has selected in
this illustration. 55

In the embodiment shown, logical operator field llb
displays a drop-down menu from which user may select a
logical operator to define a search. In various embodiments,
logical operators may be any alphanumeric character or
symbol that represents any operation, function, or filtering 60
operation known in the art, which may be performed on a
database. Examples of logical operator operators include but
are not limited to:

Contains: searches for records/documents with keywords
and sentences within a context. 65

Not Contains: searches for records/documents that do not
contain keywords and sentences within a context.

10
Equal: searches for records/documents with keywords

and sentences that match exactly with data within a
context.

Not Equal: searches for records/documents with key-
words and sentences that do not match exactly with
data within a context.

Less Than or Equal: searches for records/documents with
data within a context that is less than or equal to
provided value, and applies it to both date and numeric
data types.

Greater Than or Equal: searches for records/documents
with data within a context that is greater than or equal
to provided value, and applies it to both date and
numeric data types.

Greater Than: searches for records/documents with data
within a context that is greater than provided value, and
applies it to both numeric and date data types.

Less Than: searches for records/documents with data
within a context that is less than provided value, applies
it to both numeric and date data types.

Also illustrated in FIG. 2a is search term field llc, which
is adapted to receive either a user-entered search term for the
selection of a search term that is related to a field, or a
specific term within context fields lla by the logical opera-
tor selected in the logical operator field llb to define the
query performed.

Various embodiments may have more or fewer search
term fields, and logical operators may further describe the
relationship between the fields. This permits users to reflect
specific programming application needs, both current and
contemplated, as they may configure alternative embodi-
ments of search term fields and logical operation fields.

Relate field section 12 includes fields to query additional
(subsequent) databases after the results of the search on the
first database are returned. A user can select a second
heterogeneous database using a database list displayed in
database selection drop-down menu 12a. The user specifies
a second and subsequent database to be related to each other
during a query session using search term field 12b. The
search key for second and subsequent databases may be a
term based on the results returned from the first search. This
feature allows a user to dynamically create and update
database relationships that a programmer would otherwise
have to create. A user may do so dynamically during the
search session.

Heterogeneous database system 100 contemplates that a
user is in a better position to identify critical relationships
between databases during a dynamic search, as opposed to
a disinterested programmer who would define these rela-
tionships in advance for the same query.
FIG. 2b illustrates context field lla with the drop-down

menu of available context fields fully displayed.
As illustrated in FIG. 2c, searches are displayed in table

display format 91 according to preferences expressed by
user. This includes display fields 73 that allow a user to
choose how data is displayed.
FIG. 3 illustrates the processing of a complex search

query performed using a heterogeneous database system 100
using Method 200.
In this exemplary embodiment, the query is: "[F]ind all

the technologies that are reported in Fiscal Year 2010, third
quarter, with specific inventor that are been patented and
awarded and not licensed yet but have leads."
To perform exemplary search Method 200, user enters

user-defined schema into heterogeneous database system

US 9,824,128 B1
11

100, and it is not necessary to have a programmer create
schema for the various relational tables in the heterogeneous
database.

In this example, a user obtains three successively filtered
query datasets. These result data sets are obtained during a
single query session in real time to query multiple dispersed
heterogeneous databases.

Step 1 comprises instantiating a query object. The user
instantiates an instance of a search query object correspond-
ing to a search session, using API processing computer 40
and user interface 45. Search query object 47 is a data
structure having properties related to the search session. In
various embodiments, the search session may be conducted
in real time or over several time intervals.

Search query objects include properties corresponding to
schema values defined by a user (e.g., search context fields).
Other properties within search query object 47 include
properties corresponding to filtering criteria, relational
operators, logical operators, search terms, functions called
when properties are updated. In various embodiments func-
tions included in search query object 47 may include func-
tions to display an updated user interface and search results
returned for a particular search. In various embodiments,
user-defined schema properties and other properties within
search query object 47 are continuously updated.

In the embodiment shown, when the user instantiates
query object 47, the user enters at least one context field
corresponding to a document tag in an at least one hetero-
geneous database. The context field identified by the user is
a defined schema that will be used to define a relationship
between two or more heterogeneous databases deemed to be
important to the user.

In various embodiments drop down menus may be used to
display all available context fields, and classes may be used
to organize the context fields for display.

Step 2 comprises the step of mapping the user-defined
schema (i.e., the selected context field) to at least one
heterogeneous database in an information grid or other
collection of registered heterogeneous data bases. In Step 2
the system receives a user-defined schema value represent-
ing a context field to populate or update the search query
object 47. For example, a user may enter "patent case
number" into user interface 45. In this exemplary embodi-
ment, the context fields lla and tags are stored for each
heterogeneous database in the system and organized into
classes to simplify the user interface and facilitate user
access. In this example, the user-entered context field rep-
resents a first user-defined schema value.

This mapping step correlates the user-selected context
field to tag values and context field stored in a global context
search memory component. This memory component acts as
a database of context fields associated with each heteroge-
neous database registered in the information grid system. In
this exemplary embodiment, a list of every available (con-
nected) database within information grid 88 may be dis-
played on user interface 45 in classes or organized into any
other data structure known in the art.
A user does not need to know which of registered het-

erogeneous databases contains the context field "patent case
number," and the mapping to the particular heterogeneous
database is transparent to user. This user-determined schema
(the selected context value) value is stored in an updated
query object.
The user-defined schema value in Step 2 is mapped or

associated with stored context fields lla and tags within
information grid 88 containing geographically dispersed
databases. The context field may correspond to any external

12
or internal tag value, or implicit or explicit document
structure characteristic known in the art. In this example, the
context field is "patent case number". Heterogeneous data-
base system 100 finds a database, which maintains docu-

5 ments in which a patent case number can be searched using
an external or internal data tag.

Step 3 comprises the step of performing a search to return
a first result set SQl. Step 4 is the step of updating the user
interface to display search results. In this exemplary embodi-

io ment, search query object 47 invokes functions to update
user interface 45 with the results of the query of the first data
base. In this example, search query object 47 invokes
functions to update user interface 45 to specify all case
numbers (CNs).

15 Step 5 is the step of relating the search from heteroge-
neous database to the search results in another heteroge-
neous data base. Step 5 is critical because it allows the end
user rather than a programmer to define critical schema
relationships between databases.

20 Step 5 is also critical because it represents operations a
user performed directly on heterogeneous databases without
first importating and translating data into an interim database
having a common schema. Because of the operations
explicit and implicit in Step 5 (and alternatives 5a and 5b),

25 databases external to the user's own Wide Area Network or
internal network may be queried without the need for an
interim translation of data into a common mark-up language
format (such as XML or HTML).

In embodiment 5a of Step 5, the user defines a query
so refinement by defining a relationship between two databases

through a search key process. In alternative Step 5a, a
second dataset is retrieved using one or more of the values
retrieved from the first query, which are used as a new search
key. In this exemplary embodiment, the user performs

35 successive context searches. While performing the succes-
sive context searches, the user selects a search key from a
returned result set. A search key may be any search term user
inputs including, but not limited to, the set of all alphanu-
merical characters. The API processing computer stores

40 each user-defined search key and utilizes it as user-defined
schema. The heterogeneous search system appropriately
modifies or adds data to the search key property of the search
query object. A user may add additional context field values,
logical operators or search keys to the search query object

45 through continuously updated user interface.
Alternative Step 5b is the step of invoking logical opera-

tions processes. In 5b the user invokes functions of a search
query object with a logical operations processor within the
search engine component of an API processing computer.

5o These logical functions contain functions which may be
invoked to filter the results of the queries performed. Logical
operations which may be performed by a logical operations
processor include, but are not limited to, the following
logical operations: contains, not contains, greater than, less

55 than, greater than or equal, less than or equal, equal to, not
equal. The logical operations performed by the logical
operations processor limit the scope and succession of
results returned from querying the information grid. The API
processing computer stores the set of logical operators

60 searched and the results produced by updating the search
query object
A user may define schema from the set theoretic actions

AND, OR, NOT, XOR (exclusive OR), NXOR (negation of
XOR), and more complex combinations of these actions.

65 In various embodiments, a user may exercise a consider-
able amount of control to refine the actions taken at each
stage. However, the specified action may be different at each

US 9,824,128 B1

13
stage. For example, the resulting set might be {(SQ1QSQ2)
NOT SQ31, which is interpreted as all database items that
belong to SQ1 and to SQ2 but do not belong to SQ3.

In alternative Step 5b, the user may initiate a new query
or filtering operation, or choose to invoke a relationship
function using relationship processes to perform a relate or
join function. Successive searches may be performed using
a context search on each of the sets SQn (e.g., n=l, 2, 3).

In various embodiments the order of the queries may be
arranged so that the queries with the smallest and second
smallest cardinalities can be combined first, followed by
combination of this result with the query having the third
smallest cardinality, and so on. Various embodiments of the
invention may provide processing capabilities to assist a
user in structuring queries and provide user interface
prompts to assist a user in logically ordering queries.

In various embodiments, a user may perform additional
successive context searches and filtering searches to produce
query result sets SQn (here, nA, 2, 3....) and the context
search.

In further successive context searches and filtering
searches, a user may update the context field and search
values properties of search query object 47.

What is claimed is:
1. A distributed computer apparatus configured to perform

schema-less queries of heterogeneous databases comprising:
at least one registrar computer configured with database
management software to register a plurality of hetero-
geneous databases within an information grid by stor-
ing a URL at which each of said plurality of heteroge-
neous databases accepts search queries;

at least one search query object which contains at least
two user-defined schema values that define at least one
relationship between two or more of said plurality of
heterogeneous databases; and

at least one API processing computer which provides a
user interface for a user to instantiate a search query
object, of said at least one search query object, which
initiates and supports a search session with the infor-
mation grid, wherein the user interface is updated in
real time during the search session to display available
context fields, wherein the search query object invokes
functions to update said user interface to display results
obtained from a first heterogeneous database within the
information grid which are related to search results
obtained from a second heterogeneous database within
the information grid, wherein at least one of the first or
second heterogeneous database is a schema-less data-
base that stores data without using any schema rela-
tionships, and wherein at least the other of the first or
second heterogeneous database stores data using a
schema relationship.

2. The distributed computer apparatus of claim 1, wherein
said at least one registrar computer is configured to store
substantially all context fields associated with document tags
found in each of said plurality of heterogeneous databases.

3. The distributed computer apparatus of claim 1, wherein
said API processing computer is configured to store context
fields associated with document tags found in each of said
plurality of heterogeneous databases within said information
grid and to display said context fields on said user interface.

4. The distributed computer apparatus of claim 1, wherein
at least one information grid is configured with database
management software to map each of said plurality of
heterogeneous databases to a user-selected schema consist-
ing of a context field.

14
5. The distributed computer apparatus of claim 1, wherein

said user interface is updated to display at least one search
result value which may be used as a search key for a
subsequent query of said information grid.

5 6. The distributed computer apparatus of claim 1, wherein
said user interface is configured to iteratively display
updated search results from each of said plurality of hetero-
geneous databases queried.

7. The distributed computer apparatus of claim 1, wherein
l0 said plurality of heterogeneous databases store structured

documents, unstructured documents, and semi-structured
documents.

8. The distributed computer apparatus of claim 1, wherein
15 said API processing computer further includes a logical

operations processor operatively coupled to said user inter-
face, and wherein said user interface is configured to receive
at least one logical operator schema value supplied by said
user.

20 9. The distributed computer apparatus of claim 1, wherein
said search queries are submitted to said information grid
without being translated into a common markup language
format.

10. The distributed computer apparatus of claim 1,
25 wherein said API processing computer further includes a

multiple search query processor capable of producing mul-
tiple sets of said search queries and searching said plurality
of heterogeneous databases using said multiple sets of
search queries.

30 11. The distributed computer apparatus of claim 1,
wherein said API processing computer further includes a
relationship processor configured to perform a relate func-
tion to define a relationship between data in at least two of
said plurality of heterogeneous databases.

35 12. The distributed computer apparatus of claim 1,
wherein said API processing computer further includes a
join processor configured to perform a join function to
define a relationship between data in at least two of said
plurality of heterogeneous databases.

40 13. The distributed computer apparatus of claim 1, which
further includes a processor configured to perform a search
using a search key obtained in a first search to perform a
subsequent query of said plurality of heterogeneous data-
bases, and wherein said subsequent query is a query per-

45 formed after a previous query within a search.
14. The distributed computer apparatus of claim 1,

wherein a plurality of said search results are used as a search
key in a subsequent search of said plurality of heterogeneous
databases.

50 15. The distributed computer apparatus of claim 1, which
further includes a processor component capable of itera-
tively searching said plurality of heterogeneous databases.

16. The distributed computer apparatus of claim 1, which
further includes a processor component capable of recur-

55 sively searching said plurality of heterogeneous databases.
17. The distributed computer apparatus of claim 1,

wherein said API processor is further configured to allow
said user to update previously entered context field values.
18. The distributed computer apparatus of claim 1,

60 wherein said search query object is repeatedly modified to
update said user interface and said at least two user-defined
schema values to perform a search in real-time.
19. The distributed computer apparatus of claim 1,

wherein values of said available context fields are user
65 modifiable.

20. A method for querying a schema-less database, com-
prising:

US 9,824,128 B1

15
instantiating an instance of search query object corre-

sponding to a search session using an API processing
computer operatively coupled to a user interface;

connecting to an information grid using an API processing
computer, wherein said information grid comprises a
plurality of heterogeneous databases that each are
accessible via a URL;

updating said search query object with at least two
user-defined schemas values entered into said user
interface representing a context field stored in a global
context field database operatively coupled to said infor-
mation grid;

mapping said search query object to a mapped database
corresponding to said user-defined schema values rep-
resenting a context field stored in a global context field
database operatively coupled to said information grid;

updating said query object entered into said user interface
with user-defined schema values representing a search
term;

querying said information grid using said search term by
submitting a search query to said information grid
without translating said search query into a common
markup language format;

16
updating in real time during the search session said user

interface to display search results in a table format; and
relating the search results of the mapped database to

search results in another heterogeneous database,
5 wherein one of the mapped database and said another

database is a schema-less database that stores data
without using any schema relationships and the other is
a database that stores data using a schema relationship.

21. The method of claim 20, further comprising:

10
updating said query search object with user-defined
schema values for a relational operator.

22. The method of claim 20, further comprising:
updating said query search object with user-defined
schema values for a logical operator.

23. The method of claim 20, further comprising:
is

successively updating said user-defined logical operator
property.

24. The method of claim 20, further comprising:
successively updating said user-defined context field

property.
~~ 25. The method of claim 20, further comprising:

successively updating said user-defined search term prop-
erty.

	9824128-p0001.pdf
	9824128-p0002.pdf
	9824128-p0003.pdf
	9824128-p0004.pdf
	9824128-p0005.pdf
	9824128-p0006.pdf
	9824128-p0007.pdf
	9824128-p0008.pdf
	9824128-p0009.pdf
	9824128-p0010.pdf
	9824128-p0011.pdf
	9824128-p0012.pdf
	9824128-p0013.pdf
	9824128-p0014.pdf
	9824128-p0015.pdf

