

The Science of Drones

Parimal Kopardekar, PhD
Senior Technologist for Air Transportation System

Eric Mueller, PhD Senior Aerospace Engineer

Parimal.H.Kopardekar@nasa.gov Eric.Mueller@nasa.gov

Outline

- Overview
- What is a drone?
- Drone types and systems
- Challenges for wider drone operations

Overview

- Aviate
- Navigate
- Communicate

What is a "Drone"?

Command and control (C2) communications link

Unmanned aircraft

Pilot and ground control station (GCS)

UAS

Terminology

- Drone: the public's term for any flying vehicle that doesn't have a pilot onboard
- Unmanned aircraft system (UAS): preferred civil term that emphasizes the drone as a "system"
- Unmanned aerial vehicle (UAV): older but common term, especially in academia
- Remotely piloted aircraft system (RPAS): the military's most common term for a drone, and probably the most accurate

Common Drone Types

Small multicopter (hobbyist, commercial)

Small/medium fixed wing and rotorcraft

Large fixed wing

Drone Classification System

US DEPARTMENT OF DEFENSE (DOD) CLASSIFICATION SYSTEM						
Category	Size	Maximum Gross Takeoff Weight (MGTW) (lbs)	Normal Operating Altitude (ft)	Airspeed (knots)		
Group 1	Small	0-20	<1,200 AGL*	<100		
Group 2	Medium	21-55	<3,500	<250		
Group 3	Large	<1320	<18,000 MSL**	<250		
Group 4	Larger	>1320	<18,000 MSL	Any airspeed		
Group 5	Largest	>1320	>18,000	Any airspeed		

Drone Subsystems

Drone Subsystems

Vehicles and Airspace Operations

ADVAN	CED V	ATT	CLE
AUVAN	CED V		ULE

Detect and avoid (separation and collision)

Tracking

Control system

Geo-fencing conformance

Safe Landing

Cyber security

Low-noise

Long endurance

GPS-free/degraded

Autonomous Last/first 50 feet

AIRSPACE OPERATIONS

Architecture and roles/responsibilities

Planning, scheduling, sequencing and separation

Weather

Alerts

Data exchange protocols

Cyber security

Spectrum

Dynamic and static geo-fence definition

Contingency management

Detect and Avoid (DAA) Overview for Small UAS

Detect and avoid for UAS replaces "see and avoid" for pilots

Detect and Avoid (DAA) Overview for Large UAS

Detect and avoid for UAS replaces "see and avoid" for pilots

UTM Architecture

UTM Technical Capability Levels (TCLs)

CAPABILITY 1: DEMONSTRATED HOW TO ENABLE MULTIPLE OPERATIONS UNDER CONSTRAINTS

- Notification of area of operation
- Over unpopulated land or water
- Minimal general aviation traffic in area
- Contingencies handled by UAS pilot

Product: Overall con ops, architecture, and roles

CAPABILITY 3: FOCUSES ON HOW TO ENABLE MULTIPLE HETEROGENEOUS OPERATIONS

- · Beyond visual line of sight/expanded
- Over moderately populated land
- · Some interaction with manned aircraft
- Tracking, V2V, V2UTM and internet connected

Product: Requirements for heterogeneous operations

CAPABILITY 2: DEMONSTRATED HOW TO ENABLE EXPANDED MULTIPLE OPERATIONS

- Beyond visual line-of-sight
- · Tracking and low density operations
- Sparsely populated areas
- Procedures and "rules-of-the road"
- Longer range applications

Product: Requirements for multiple BVLOS operations including off-nominal dynamic changes

CAPABILITY 4: FOCUSES ON ENABLING MULTIPLE HETEROGENEOUS HIGH DENSITY URBAN OPERATIONS

- Beyond visual line of sight
- Urban environments, higher density
- Autonomous V2V, internet connected
- Large-scale contingencies mitigation
- Urban use cases

Product: Requirements to manage contingencies in high density, heterogeneous, and constrained operations

Risk-based approach: depends on application and geography

UTM TCL2: Scheduling and Executing Multiple BVLOS Operations

Scheduling and tracking operations and contingency management

NASA FAA RTT Comm&Nav Working Group

Comm&Nav (C&N) Working Group (WG) is one among 4 NASA-FAA RTT working groups, the others being Data Architecture, Concept and Operations, Sense and Avoid.

C&N WG Objectives

Develop C&N guidance to industry for ensuring that

- Unmanned Aircraft (UA) are under operational control of the pilot
- UA remain within a defined area

NASA

NASA Guidance to Industry (Comm)

- CG01. UAS operator should have a means to detect loss of Command and Control (C2) radio link
- CG02. UAS operator should make the means to detect loss of C2 known to public
- CG03. UAS operator should define steps to mitigate loss of C2 link
- CG04. UAS operator should make loss of C2 link contingency mitigation steps known to public
- CG05. When loss of C2 link occurs, UAS operator should gather contextual and digital data that can describe this event for further review
- CG06. UAS operator should have a means verify Unmanned Aircraft (UA) execution of a maneuver command from the operator
- CG07. UAS operator should make the means to verify Unmanned Aircraft (UA) execution of a maneuver command from the operator known to public
- CG08. UAS operator should define steps to mitigate a condition where UA does not execute a maneuver command from the operator
- CG09. UAS operator should make steps to mitigate a condition where UA does not execute a maneuver command from the operator known to public
- CG10. When UA does not execute a maneuver command from the operator, UAS operator should gather contextual and digital data that can describe this event for further review

NASA Guidance to Industry (Nav)

- NG01. UAS operator should know position error of their UAS system
- NG02. UAS operator should know velocity error of their UAS system
- NG03. UAS operator should have a means to detect loss of navigation
- NG04. UAS operator should make the means to detect loss of navigation known to public
- NG05. UAS operator should define steps to mitigate loss of navigation
- NG06. UAS operator should make loss of navigation contingency mitigation steps known to public
- NG07. When loss of navigation occurs, UAS operator should gather contextual and digital data that can describe this event for further review
- NG08. UAS operator should define boundary of operational airspace where UA will stay within
- NG09. UAS operator should make operational airspace boundary known to public
- NG10. UAS operator should make UA's operation time in its operation airspace known to public

Lessons Learned from Flight Tests

- Altitude standard
- Density altitude
- Up drafts
- High/low temperature grade equipment
- Manned-unmanned vehicle interaction

Manned and unmanned vehicle interaction **LANCASTER** PIPER CUB 500 FT AGL 300 FT AGL LSTAR Radar **BRAMOR RTK Manned Aircraft** GCS 3 GCS 5

National UAS Standardized Testing and Rating (NuSTAR)

- Current State of the Art
 - Many performance measures are considered for UAS
 - Capability to assess and certify performance benchmarking is a huge gap
- Proposed Solution
 - Responsible, credible, collaborative tests and data
 - Parallel: Underwriter's Laboratory, Consumer Reports, JD Powers
- Approach
 - Drop tests
 - Urban, rural, atmospheric conditions (e.g., fog, smog, rain)
 - Sense and avoid, Simulated obstructions, GPS denied conditions, etc.
- Data oriented rating, acceptance, and assurance
- Every UAS vehicle model goes through
- Support UAS manufacturers, consumers, FAA, insurance companies, and public at large through objective assessments

Summary

- Vehicles will get more capable over time
- Airspace operations capabilities will remain important for scalability
- NUSTAR will help pave the way for assessment of vehicle performance

Thank you!

Dr. Parimal "PK" Kopardekar parimal.h.kopardekar@nasa.gov

Dr. Eric Mueller eric.mueller@nasa.gov

References

UTM

- https://www.aviationsystemsdivision.arc.nasa.gov/publications/category/utm.shtml
- https://utm.arc.nasa.gov/documents.shtml

Unmanned aircraft systems

https://www.aviationsystemsdivision.arc.nasa.gov/publications/category/uas.shtml