CO₂ Capacity Sorbent Analysis Using Volumetric Measurement Approach

Roger Huang, KBR Wyle, NASA ARC Tra-My Justine Richardson Logyx LLC, NASA ARC Grace Belancik NASA ARC Darrell Jan NASA ARC Jim Knox NASA MSFC

Outline

- Background
- Analysis Instrumentation
- Sorbent Characterization
- Possible Improvements

Background

- Molecular sieve
- Carbon Dioxide Removal Assembly
- 4BMSX

CHARLESTON, SOUTH CAROLINA

Research Motivation

- Challenges with current SOA
 - Dusting
 - Availability
- Opportunity for improvement
 - Mass
 - Volume
 - Robustness
- Sorbent characterization efforts
- Mechanical crush strength (MSFC)
- H₂O and CO₂ adsorption capacity (ARC)
 - Silica Gel
 - Zeolite

Analysis Instrumentation

- Micromeritics ASAP 2020
- Volumetric adsorption capacity analysis
- P min 4mTorr
 Ana
- T range
 - 0C-75C

- Analysis ComputerASAP 2020
 - ASAF 2020
 - Degas Ports
 - Analysis Port
- Temperature Control Bath
 - Analysis Gases

Analysis Method

- ASAP 2020 software package
 - Sample preparation
 - Free space measurement
 - P_o and analysis temperature definition
 - Dosing method
 - Equilibration parameters

Sorbent Characterization through Empirical Modeling

•

•

Sorbents of Interest

Name	Manufacturer	Form Factor	Туре
Grade 544 13X	Grace Davison	Bead	Zeolite
BASF 13X	BASF	Bead	Zeolite
Grade 522 5A	Grace Davison	Bead	Zeolite
Grade 514 4A	Grace Davison	Bead	Zeolite
APG-III	Honeywell UOP	Bead	Zeolite
VSA-10	Honeywell UOP	Bead	LiLSX

Grace Davison 544 13X

BASF 13X

CHARLESTON, SOUTH CAROLINA

10

JULY 16 - 20, 2017

Grace Davison 5A

CHARLESTON, SOUTH CAROLINA

11

Grace Davison 4A

JULY 16 - 20, 2017

APG III

VSA-10

Procedural Lessons Learned

- Issues observed
 - Data deviation at low pressures with analysis of the same sample
- Sorbent activation performed on Analysis Port rather than designated Degas Ports

Conclusions

- Tailored sample analysis parameters
 - Current settings best for 13X, 5A
- LiLSX VSA-10 and APG-III materials show better CO₂ sorption capacity
- Datasets produce reasonable basis for system modelling

Acknowledgements

- Dr. Armin Ebner, University of South Carolina Chemical Engineering
- Dr. Jim Ritter, University of South Carolina Chemical Engineering
- Gregory Cmarik, NASA Marshall Space Flight Center