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Motivation (1/2)

• Future aircraft systems will rely more on electrical and electronic 
components

• UAV’s with all electric powertrain are increasingly being used for long 
missions

• Electrical and Electronic components have increasingly critical role in 
on-board, autonomous functions for 

– Vehicle controls, communications, navigation, radar systems 
– Power electronic devices such as power MOSFETs and IGBTs are 

frequently used in high-power switching circuits
– Batteries are the sole energy storage 
– The integrated navigation (INAV) module combines output of the GPS 

model and inertial measurement unit. 
• Assumption of new functionality increases number of faults with 

perhaps unanticipated fault modes
• We need understanding of behavior of deteriorated components to 

develop capability to anticipate failures/predict remaining RUL



Motivation (2/2)

Images courtesy : Boeing
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Outline

• Goals
– Understand battery behavior through dynamic models
– Develop model-based algorithms for state estimation, end of 

discharge (EOD) prediction, and end of life (EOL) prediction
– Validate algorithms in the lab and fielded applications

• Algorithms
– Prognostic Architecture
– Dynamic state and state-of-charge estimation

• Modeling
– Electric circuit equivalent (for EOD prediction)
– Electrochemistry-based model (for EOD and EOL prediction)

• Applications
– Rover 
– Edge 540-T electric aircraft
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Outline

• Introduction to Prognostics
• Introduction to Model-based Prognostics
• Research Approach
• Electric Vehicle Powertrain
• Algorithms

– Prognostic Architecture
– Dynamic state and state-of-charge estimation

• Applications
– Rover 
– Edge 540-T electric aircraft
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Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age 

parameters
• EOD prediction computes prediction of time of EOD, given state and 

age parameter estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging 

rate progression
• EOL prediction computes prediction of time of EOL, given age 

parameter and age rate parameter estimates
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The Basic

Time

System 
State

Threshold as a Function of System State

tE

ΔtE

t

Not necessarily a one-dimensional problem!
… This schematic is oversimplified!
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Why Prognostics?

Home 
Base

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft

Example: UAV Mission
Visit waypoints to accomplish science objectives. Predict aircraft battery end of discharge to 
determine which objectives can be met. Based on prediction, plan optimal route. Replan if 
prediction changes.

Prognostics: 
Full discharge 
before mission 

completion
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Why Prognostics?

• Prognostics can enable:
– Adopting condition-based maintenance strategies, instead of time-

based maintenance
– Optimally scheduling maintenance
– Optimally planning for spare components
– Reconfiguring the system to avoid using the component before it 

fails
– Prolonging component life by modifying how the component is used 

(e.g., load shedding)
– Optimally plan or replan a mission

• System operations can be optimized in a variety of ways
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The Basic Idea : Batteries Example

Time

Cell 
Voltage

Voltage Threshold

tEOD

ΔtEOD

t

E = End of Discharge (EOD)
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The Basic Idea : Batteries Example

Threshold as a Function 
of System State

System
State Space

Future Evolution 
of System State

x(t)
x(tE)

1. What is tE?
2. What is tE-t?
3. What is x(tE)?



Prognostic Algorithm Categories

• Type I: Reliability Data-based
– Use population based statistical model
– These methods consider historical time to failure data which are used to model 

the failure distribution.  They estimate the life of a typical component under 
nominal usage conditions.

– Ex: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learned from accumulated knowledge
– These methods also consider the environmental stresses (temperature, load, 

vibration, etc.) on the component.  They estimate the life of an average 
component under specific usage conditions.

– Ex: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model
– These methods also consider the measured or inferred component degradation.  

They estimate the life of a specific component under specific usage and 
degradation conditions.

– Ex: Cumulative Damage Model, Filtering and State Estimation



Physics-Based Methods

• Description of a system’s underlying physics using suitable 
representation

• Some examples:
– Model derived from “First Principles”

• Encapsulate fundamental laws of physics
§ PDEs
§ Euler-Lagrange Equations

– Empirical model chosen based on an understanding of the dynamics of a 
system

• Lumped Parameter Model
• Classical 1st (or higher) order response curves

– Mappings of stressors onto damage accumulation
• Finite Element Model
• High-fidelity Simulation Model

• Something in the model correlates to the failure mode(s) of interest



Physics-Based Models

• Pros
– Results tend to be intuitive

• Based on modeled phenomenon
• And when they’re not, they’re still instructive (e.g., identifying needs for more 

fidelity or unmodeled effects)
– Models can be reused

• Tuning of parameters can be used to account for differences in design
– If incorporated early enough in the design process, can drive sensor 

requirements (adding or removing)
– Computationally efficient to implement

• Cons
– Model development requires a thorough understanding of the system
– High-fidelity models can be computationally intensive

• Examples
– Paris-Erdogan Crack Growth Model
– Taylor tool wear model
– Corrosion model
– Abrasion model



INTRODUCTION TO MODEL-
BASED PROGNOSTICS



Model-based prognostics (1/2)

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{�̃, ⇥̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

• State vector includes 
dynamics of the degradation 
process

• It might include nominal 
operation dynamics

• EOL defined at time in which 
performance variable cross 
failure threshold

• Failure threshold could be 
crisp or also a random 
variable
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ẋ(t) = f(x(t), u(t)) + w(t)

y(t) = h(x(t)), u(t)) + v(k)

R(tp) = tEOL � tp



Model-based prognostics (2/2)

• Tracking of health 
state based on 
measurements

• Forecasting of health 
state until failure 
threshold is crossed

• Compute RUL as 
function of EOL 
defined at time failure 
threshold is crossed
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Accelerated 
Aging

Degradation 
Modeling

Training 
Trajectories
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Trajectory

Parameter 
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State-space 
Representation
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Methodology

xk = Axk�1 +Buk�1 + wk�1

yk = Hxk + vk
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RESEARCH APPROACH
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High level research efforts

• Prognostics models and algorithms
– Identification of precursors of failure for MOSFETs under different failure mechanism 

conditions
– Identification of precursors of failure for different IGBT technologies (CALCE) 
– Modeling of degradation process MOSFETs
– Development of prognostics algorithms

• Prognostics for output capacitor in power supplies (Vanderbilt University)
– Electrical overstress and thermal overstress
– Development of prognostics algorithms

• Accelerated Life Testing
– Thermal overstress aging of MOSFETs and IGBTs
– Electrical overstress aging testbed MOSFETs
– Electrical overstress aging testbed for Capacitors

• Effects of lightning events of MOSFETS (LaRC)
• Battery Degradation and ageing ( ARC – LaRC)
• Ageing Effecting on ESC’s ( ARC – LaRC)

20
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Research Approach

Development of remaining life prediction algorithms that take into account the different sources of 
uncertainty while leveraging physics-based degradation models that considers future operational 

and environmental conditions

Development of degradation models based on the physics of the device and the failure 
mechanisms

Development of accelerated aging testbeds that facilitate the exploration of different failure 
mechanisms and aid the understanding of damage progression 

Identification of precursors of failure which play an essential role in the prediction of remaining life 

Identification of failure modes and their relationship to their particular failure 
mechanisms



Prognostics Algorithm Maturation through Validation 
Experiments
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Prognostics Algorithm Maturation through Validation 
Experiments
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ELECTRIC VEHICLE 
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System Level Prognostics

n Component Level Prognostics –
System Level Prognostics

n Batteries 
n Power Conditioning Circuit –

Capacitors, MOSFETs
n Electronic Speed Controllers ( ESC) –

MOSFETs
n BLDC

n Study Cascading faults 
n Effects of component level 

aging/degradation on system 
performance
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Hardware in Test Loop
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Accelerated Aging

• Traditionally used to assess the reliability of products with expected 
lifetimes in the order of thousands of hours

– in a considerably shorter amount of time
• Provides opportunities for the development and validation of prognostic 

algorithms 
• Such experiments are invaluable since run-to-failure data for 

prognostics is rarely or never available
• Unlike reliability studies, prognostics is concerned not only with time to 

failure of devices but with the degradation process leading to an 
irreversible failure

– This requires in-situ measurements of key output variables and observable 
parameters in the accelerated aging process with the associated time 
information

• Thermal, electrical and mechanical overstresses are commonly used 
for accelerated aging tests of electronics
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State Estimation

• What is the current system state and its associated 
uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Use unscented Kalman filter (UKF)
– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)
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Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)
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Prediction Algorithm

• The P function takes an initial state, 
and a parameter, an input, and a 
process noise trajectory

– Simulates state forward using f until E is 
reached to computes kE for a single 
sample

• Top-level prediction algorithm calls P
– These algorithms differ by how they 

compute samples upon which to call P
• Monte Carlo algorithm (MC) takes as 

input
– Initial state-parameter estimate
– Probability distributions for the 

surrogate variables for the parameter, 
input, and process noise trajectories

– Number of samples, N
• MC samples from its input 

distributions, and computes kE
• The “construct” functions describe 

how to construct a trajectory given 
trajectory parameters



POWER TRANSISTORS
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!32

!

Modeling for Power MOSFET under electrical overstress

• Two-transistor model is shown to be a 
good candidate for a degradation model 
for model-based prognostics. 

• The model parameters K, and W1 could 
be varied as the device degrades as a 
function of usage time, loading and 
environmental conditions. 

• Parameter W1 defines the area of the 
healthy transistors, the lower this area, the 
larger the degradation in the two-transistor 
model. In addition, parameter K serves as 
a scaling factor for the thermal resistance 
of the degraded transistors, the larger this 
factor, the larger the degradation in the 
model.
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Precursor of Failure

• As case temperature increases, ON-
resistance increases

• This relationship shifts as the 
degradation of the device increases

• For a degraded state, ON-resistance 
will be higher at any given case 
temperature

• This is consistent with the die-attach 
damage since it results on increased 
junction temperature operation

• This plot can be used directly for 
fault detection and diagnostics of the 
die-attach failure mechanism



Degradation process data

34

Normalized ON-state resistance (ΔRDS(ON)) 
and filtered trajectory for device #36 

Normalized ON-state resistance (ΔRDS(ON)) 
and filtered trajectory for device #36 

• Cases #08, #09, #11, #12 and #14 
are used for algorithm development 
purposes. 

• Case #36 is used to test the 
algorithms. 
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Empirical Degradation Model

• An empirical degradation model was selected for the model-
based algorithms

• Exponential based function to capture degradation process
• Two parameters in the model which will be estimated on-line

35



Prediction of Remaining Life
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RUL Prediction Methodology Considerations

• A single feature is used to assess the health state of the device 
(ΔRDS(ON))

• It is assumed that the die-attached failure mechanism is the only active 
degradation during the accelerated aging experiment

• Furthermore, ΔRDS(ON) accounts for the degradation progression from 
nominal condition through failure

• Periodic measurements with fixed sampling rate are available for 
ΔRDS(ON)

• A crisp failure threshold of 0.05 increase in ΔRDS(ON) is used
• The prognostics algorithm will make a prediction of the remaining 

useful life at time tp, using all the measurements up to this point either 
to estimate the health state at time tp in a regression framework or in a 
Bayesian state tracking framework

• It is also assumed that the future load conditions do not vary 
significantly from past load conditions

37
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RUL Prediction Algorithms

• Gaussian Process Regression
– Algorithm development cases used to select covariance matrix structure 

and values
• Extended Kalman filter

– Empirical degradation model
– State variable: Normalized ON-resistance and degradation model 

parameters
– Arbitrary values for measurement and process noise variance

• Particle filter
– Empirical degradation model
– State variable: Normalized ON-resistance, degradation model parameters
– Exponential growth model used for degradation model parameters
– Arbitrary values for measurement and process noise variance

38



RUL estimation results
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CAPACITORS
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Degradation Mechanisms

Decrease in capacitance
Increase in ESR

Electrolyte Evaporation

Degradation of Oxide Film

Degradation in 
Anode foil

Degradation in  
Cathode foil

Increase in internal Temperature

Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles
Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles

Increase in internal Temperature

Over Voltage Stress
Excess Ripple Current

Charging\Discharging Cycles

Degradation Causes\ Mechanisms Failure Modes

Over Voltage Stress

Excess Ripple Current
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High Ambient Temperature

High Ambient Temperature

High Ambient Temperature

Prolonged Use -Nominal Degradation

Prolonged Use -Nominal Degradation

Aging in the 
dielectric material

Prolonged Use 

Electrical Stress
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Degradation Model: Electrical Circuit Equivalent
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• Decrease in electrolyte volume :

• Capacitance (C) ): Physics-Based Model:

• Electrolyte evaporation dominant degradation phenomenon
– First principles: Capacitance degradation as a function of electrolyte loss 

43

Capacitance Degradation Model

(1)

(2)

(3)
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• Oxide breakdown observed - experimental data 
• The breakdown factor is exp. function of electrolyte evaporation 

Cbk(t) = exp f(Veo – Ve(t))

• Updated in capacitance degradation model :

44

Capacitance Degradation Model



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

• Decrease in electrolyte volume :

• ESR
– Based on mechanical structure and electrochemistry.
– With changes in RE (electrolyte resistance )

45

Dynamic Model of ESR

(8)
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Process Flow
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RUL and Validation – EOS -Experiment – ESR 
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LI- ION BATTERIES
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Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface and bulk 
control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related changes in 

battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters
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Battery Aging

• Contributions from both decrease in mobile 
Li ions (lost due to side reactions related to 
aging) and increase in internal resistance

– Modeled with decrease in “qmax” parameter, 
used to compute mole fraction

– Modeled with increase in “Ro” parameter 
capturing lumped resistances
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Rover
• Planetary rover testbed at NASA Ames 

Research Center
– 24 lithium ion batteries, two parallel sets of 

12 in series
– Batteries power 4 motors, one for each 

wheel (skid steering)
• Rover operated in two driving modes

– Unstructured driving
• Rover is driven freely by an operator, 

without prior knowledge of actions
– Structured driving

• Rover has a given mission, to visit a 
set of waypoints

• Rover moves along, visiting waypoints
• End-of-discharge prediction is 

required in order to ensure the given 
set of waypoints can be visited, and if 
not, to replan the route to optimize 
mission value

Ref : A. Sweet et al “Demonstration of Prognostics-Enabled Decision Making Algorithms on a 
Hardware Mobile Robot Test Platform”, PHM 2013
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Results: Structured Driving

Predictions are very accurate since rover travels at a known fixed average speed, 
and waypoints are known. 
Uncertainty in predictions is significantly less than for unstructured driving, since 
more information about future inputs are known. 
Predictions are under at the start because power drawn for first 500 s is half the 
average.
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Edge 540-T

• Subscale electric 
aircraft operated 
at NASA Langley 
Research Center

• Powered by four 
sets of Li-
polymer batteries

• Estimate SOC 
online and 
provide EOD and 
remaining flight 
time predictions 
for ground-based 
pilots
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Predication over Flight Plan

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps

• The min, max and median 
predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for 
entire flight plan

• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts 
down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015
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Performance Requirements

• Accuracy requirements for the two minute warning were specified as:
– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 
before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 
runs
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Data Sets Available for Download

• https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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Remarks (1/2)

• Electrical and Electronics PHM Maturity - scientific 
and engineering challenges

• Research approach challenges
– How to balance lack of knowledge of the system vs own 

expertise on particular PHM tools
– Data-driven or model-based?

• Data is always needed but more important, 
information about degradation/aging processes 
is key

• Experiments and field data
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Remarks (2/2)

• Aging systems as a research tool
– Value in terms of exploration of precursors of failure and 

their measurements is evident
– Still an open question on how degradation models and 

algorithms are translated to the real usage timescale
• In the use of physics

– It should be embraced
• Validate models and algorithms with data from lab 

experiments and fielded systems
• A success in developing PHM methodologies in an 

real usage application will require the right team
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