Analysis of NO formation during Earth entry using the Quasi Classical Trajectory Method

Narendra Singh

Department of Aerospace Engineering and Mechanics, University of Minnesota

> Mentors: Dr. Richard L. Jaffe, Dr. David W. Schwenke

NASA Ames Research Center

NASA Ames Summer Internship 2017

Goal : Understanding high-temperature, non-equilibrium chemistry for hypersonic flows

- 1. Prediction of the thermo-chemical non-equilibrium state
- 2. Atomic oxygen and nitrogen dictate heat shield oxidation and ablation
- 3. Improve thermal protection system design

Goal : Understanding high-temperature, non-equilibrium chemistry for hypersonic flows

- 1. Prediction of the thermo-chemical non-equilibrium state
- 2. Atomic oxygen and nitrogen dictate heat shield oxidation and ablation
- 3. Improve thermal protection system design

Existing models :

- 1. empirical
- 2. fit to a narrow range of experimental results
- 3. significant uncertainties on extrapolation

Goal : Understanding high-temperature, non-equilibrium chemistry for hypersonic flows

- 1. Prediction of the thermo-chemical non-equilibrium state
- 2. Atomic oxygen and nitrogen dictate heat shield oxidation and ablation
- 3. Improve thermal protection system design

Existing models :

- 1. empirical
- 2. fit to a narrow range of experimental results
- 3. significant uncertainties on extrapolation

Next Generation Models:

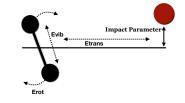
- 1. Based on rigorous framework of statistical thermodynamics
- 2. Consistent with information from molecular simulations [Quasi Classical Trajectory (QCT) and Direct Molecular Simulation (DMS)]

Goal : Understanding high-temperature, non-equilibrium chemistry for hypersonic flows

- 1. Prediction of the thermo-chemical non-equilibrium state
- 2. Atomic oxygen and nitrogen dictate heat shield oxidation and ablation
- 3. Improve thermal protection system design

Existing models :

- 1. empirical
- 2. fit to a narrow range of experimental results
- 3. significant uncertainties on extrapolation

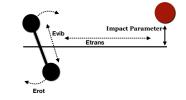

Next Generation Models:

- 1. Based on rigorous framework of statistical thermodynamics
- 2. Consistent with information from molecular simulations [Quasi Classical Trajectory (QCT) and Direct Molecular Simulation (DMS)]

Current Focus: What can we learn from QCT, besides obtaining rate constants, through $N_{\rm 2}$ + O interactions ?

Quasi Classical Trajectory Approach

- 1. Initialize reactants (quantized)
 - relative velocity of approach
 - impact parameter
 - Internal energy state
 - Randomize orientations of atoms
- 2. Integrate Hamilton's equations of motion
- 3. Analyze outcomes
- 4. Run lots of these calculations and analyze outcomes (statistically)

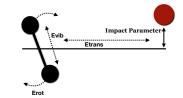


Quasi Classical Trajectory Approach

- 1. Initialize reactants (quantized)
 - relative velocity of approach
 - impact parameter
 - Internal energy state
 - Randomize orientations of atoms
- 2. Integrate Hamilton's equations of motion
- 3. Analyze outcomes
- 4. Run lots of these calculations and analyze outcomes (statistically)

What do we need for the above? Forces on each atom.

• Potential energy surface (PES)


Quasi Classical Trajectory Approach

- 1. Initialize reactants (quantized)
 - relative velocity of approach
 - impact parameter
 - Internal energy state
 - Randomize orientations of atoms
- 2. Integrate Hamilton's equations of motion
- 3. Analyze outcomes
- 4. Run lots of these calculations and analyze outcomes (statistically)

What do we need for the above? Forces on each atom.

• Potential energy surface (PES)

For this work, REAQCT Code, developed at University of Minnesota has been used.

Potential Energy Surface for N₂+O

 N_2 +O interactions require two surfaces (A^{''} and A['], ground triplet)

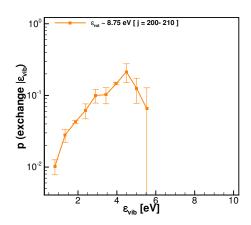


Figure: Contour plot for a possible NON geometry (Energies in kcal/mol)

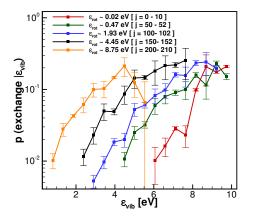
Lin, W., Varga, Z., Song, G., Paukku, Y. and Truhlar, D.G., 2016. Global triplet potential energy surfaces for the N2 (X 1 Σ)+ O (3 P) \rightarrow NO

 $(X 2\pi)$ + N (4 S) reaction. The Journal of chemical physics, 144(2), p.024309

Translational energy, $\epsilon_{trans} pprox 1.0 \, \mathrm{eV}$

 $N_2(\epsilon_{\textit{vib}}, \epsilon_{\textit{rot}}) + O \rightarrow NO + N$

Dissociation energies: ϵ_d


 $=9.91~eV\left(N_{2}\right)$ and 5.6 eV (NO)

Vibrational energy effect

- linear variation at lower energies
- nearly constant at higher energies

Figure: Exchange reaction probability vs. vibrational energy

Translational energy, $\epsilon_{trans} \approx 1.0 \text{ eV}$

 $N_2(\epsilon_{\textit{vib}}, \epsilon_{\textit{rot}}) + O \rightarrow NO + N$

Dissociation energies: ϵ_d

= 9.91 eV (N₂) and 6.62 eV (NO)

Vibrational energy effect

- linear variation at lower energies
- nearly constant at higher energies

Rotational energy effect

• makes up for threshold energy

Figure: Exchange reaction probability vs. vibrational energy

Translational energy, $\epsilon_{trans} \approx 3.0 \text{ eV}$

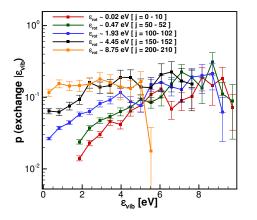


Figure: Exchange reaction probability vs. vibrational energy

 $N_2(\epsilon_{\textit{vib}}, \epsilon_{\textit{rot}}) + O \rightarrow NO + N$

Dissociation energies: ϵ_d

=9.91 eV (N_2) and 5.6 eV (NO)

Vibrational energy effect • linear variation at lower

- linear variation at lower energies
- nearly constant at higher energies

Rotational energy effect

• makes up for threshold energy

Translational energy effect

• Increase in ϵ_{trans} increases reaction probability

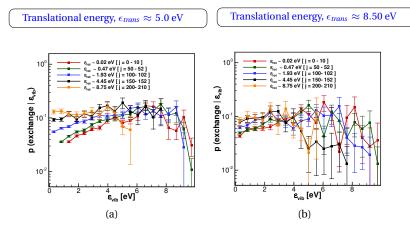


Figure: Exchange reaction probability vs. vibrational energy, $N_2(\epsilon_{vib}, \epsilon_{rot}) + O \rightarrow NO + O$

Exchange Reaction Comparison: N₂ +O and N₂+N System

Translational energy, $\epsilon_{trans} \approx 3.00 \text{ eV}$

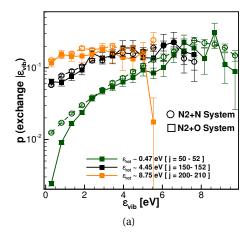


Figure: Exchange reaction probability vs. vibrational energy,

N₂ dissociation analysis based on molecular energies

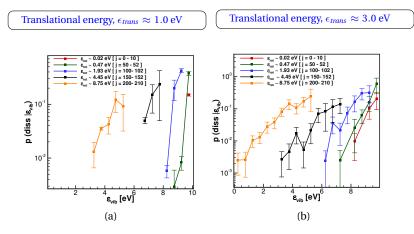


Figure: Dissociation reaction probability vs. vibrational energy, $N_2(\epsilon_{\textit{vib}},\epsilon_{\textit{rot}})$ + O \rightarrow N + N + O

N₂ dissociation analysis based on molecular energies

Translational energy, $\epsilon_{trans} \approx 5.0 \text{ eV}$

Translational energy, $\epsilon_{trans} \approx 8.50 \ {
m eV}$

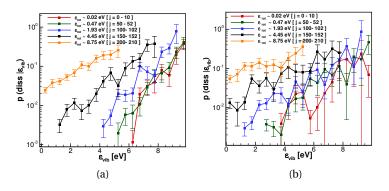


Figure: Dissociation reaction probability vs. vibrational energy, $N_2(\epsilon_{vib}, \epsilon_{rot}) + O \rightarrow N + N + O$

Reaction Rate Constants for Various Temperatures

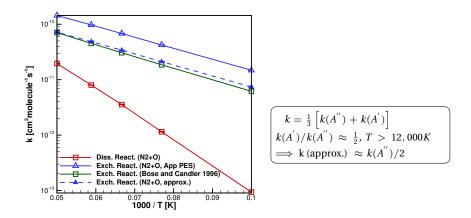


Figure: Reaction Rate Constants

Conclusions

- Reaction cross-sections for exchange and dissociation reactions strongly depend on vibrational energy
- Reaction cross-reactions for dissociation has stronger dependence on vibrational energy
- On logarithmic scale, linear variation with vibrational energy for both reactions was shown
- The reaction cross-sections for interactions are not chaotic, in fact they have very simple trends. This is true for non-reactive interactions too (not shown in presentation)
- Simple trends are strong motivation to build simple models consistent with QCT information.

Thank you

Questions?