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Traffic Flow Management (TFM)

* Main function: balancing demand and capacity

) Weather: 54.75%

§ Volume: 32.72%

| Equipment: 0.71%

I Closed Runway: 8.11%
) Other: 3.71%

* Severe (convective) weather:
* Reduces the airspace capacity

* Major cause of disruptions and delays in the National ‘\

Airspace System (NAS)

Bureau of Transportation Statistics: Causes of National
Aviation System Delays. May, 2012 — May, 2017
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Traffic Flow Management (TFM)

* Main function: balancing demand and capacity

) Weather: 54.75%

I Volume: 32.72%

| Equipment: 0.71%

I Closed Runway: 8.11%
) Other: 3.71%

* Severe (convective) weather:

* Reduces the airspace capacity

* Major cause of disruptions and delays in the National ‘
Airspace System (NAS)

* Traffic Management Initiatives (TMIs):
e Ground Delay Program (GDP)
 Airspace Flow Program (AFP) iﬂ.raet?é’nigfen;pggilonMSat?t;t)'fZ_C :::;Sz%flgational
* Collaborative Trajectory Options Program (CTOP)
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. TFM identifies areas with reduced capacities e
* Weather forecast '
¢ Demand 5//
. TFM sets Flow Constrained Areas (FCAs)
* Position S
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Problem statement

e Given

e Flow Constrained Areas (FCAs)
 Airline Trajectory Option Sets (TOSs)

* For each flight, assign

* Route from Trajectory Option Set (TOS)

* Ground delay
e Subject to

* Flow Constrained Area (FCA) capacity

constraints
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Comparison to current approach

* Current approach
* Based on First Come First Served principle
(perceived as equitable by airlines)
* Consecutive FCAs not supported
* Airborne delays not accounted for
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Comparison to current approach

* Current approach
* Based on First Come First Served principle
(perceived as equitable by airlines)
* Consecutive FCAs not supported
* Airborne delays not accounted for

* Proposed approach
* Global optimization
e Constraints at multiple FCAs satisfied simultaneously
* Airborne delay accounted for
* Equity metric in optimization
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Resource allocation problem: overview

Resources Performance metrics Allocation algorithms
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Resource allocation problem: overview

Resources Performance metrics Allocation algorithms

FCA capacities System efficiency => Flight priority order
Total system cost * Ration-by-Schedule
Space-based allocation * Ground delays (RBS) principle
e Minimum time * Airborne delays
spacing between * Relative Trajectory Global optimization
flights Cost (RTC)  Minimize the total
* Even flight system cost, and
distribution Equity =>  Maximum average
e Suited for stochastic = Max-Min Fairness airline cost
optimization Scheme simultaneously

* Maximum average
airline cost
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Ration-by-Schedule (RBS)

6/19



Ration-by-Schedule (RBS)

* For each flight, calculate its Initial Arrival Time (IAT)

* For each route option from TOS, calculate the Estimated Arrival Time (ETA) at
its first (primary) FCA

* Choose the minimum among these Estimated Arrival Times (ETAs)
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Ration-by-Schedule (RBS)

* For each flight, calculate its Initial Arrival Time (IAT)

* For each route option from TOS, calculate the Estimated Arrival Time (ETA) at
its first (primary) FCA

* Choose the minimum among these Estimated Arrival Times (ETAs)
* Order flights based on their Initial Arrival Times (IATs) in a priority list

* For each flight from the priority list, find the best (minimum-cost)
available route and delay allocation

e For each route option from TOS, find the best available arrival time at the first
(primary) FCA satisfying the spacing constraints at this FCA

e Calculate the total cost (RTC + ground delay) for each option
* Choose the option with the least total cost
* Assign the selected route and the associated delay to flight
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RBS scheduling example

1225 T
1220 +
1215 T
1210 +

1205

1200

FCA(1)

1325 1
1320 +
1315 +

1310

1305 +
1300 ¢

spacing = 5 minutes

FCA(2)

1425 1
1420 1
1415 -
1410 1
1405 ;
1400 +

FCA(3)
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RBS scheduling example

primary route secondary route
(lea slt-co st q,=20 ////
option) o 1400
Flight X FCA(1) FCA(2) 2  FCA(3)
q,=
1100 1200 1300 1400
N
\
scheduled 1225 T 1325 1 1425 +
departure 1220 + 1320 + 1420 +
time 1215 7 1315 1 1415 1
1210 + 1310 1410 1
1205 ¢ 1305 + 1405 ~
1200 ¢ 1300 ¢ 1400 +

spacing = 5 minutes

q; Relative Trajectory Cost (RTC) of route j
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RBS scheduling example

q,=20
1409
Flight X FCA(1) FCA(2) — 3 FCA(3)
q,=
1100 [1200 1300 1400
1225 1325 1425
1220 1320 + 1420 +
1215 1315 + 1415 7
1210 ©1210 1310 @ ‘1410% 1409
1205 @ d. =10 1305 + 1405 d,=0
1200 © .@ 1300 @ 1400+ ¢, =20
2
> i :
o spacing = 5 minutes
least cost
q; Relative Trajectory Cost (RTC) of route j C; Total cost of route option j

d; Ground delay on route j
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RBS scheduling example

q,=20
1409
Flight X FCA(1) FCA(2) ~ Y UFCA(3)
q,=
EDCT 1210 1315 1415
=1110
d,=10 1225 1 1325 1 1425 +
1220 + 1320 + 1420 +
1215 + 1315@ 1315 1415 %
1210 @1210 13109 2.5 1410 +
1205 © 13:{151r L 1405 -
1200 ¢ 1300 ¢ 1400 +
RBS cost =10 spacing = 5 minutes

q; Relative Trajectory Cost (RTC) of route j

d; Ground delay on route j

C; Total cost of route option j

Clk

i Airborne delay on route j before entering FCA k
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RBS scheduling example

q,=20
1409
Flight X FCA(1) FCA(2) ”  FCA(3)
q,=
EDCT 1210 1315 1421
=1110
d.=10 1225 + 1325+ 1425 1+
! 1220 + 1320 1 1420 1421
1215 -+ 1315@ 1315 1415F a’ =6
‘1210,1210 1310 ¢ a12=5 1410 +
=
g T Air delay = 11
RBS cost =10 spacing = 5 minutes Actual cost =10 +2* 11 = 32
q; Relative Trajectory Cost (RTC) of route j C; Total cost of route option j

k

d; Ground delay on route j a; Airborne delay on route j before entering FCA k
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Mixed-Integer Linear Program (MILP) formulation

N

Input data
: N number of flights
min « C; + wy
é,d,ay — N4 number of airlines

A% set of flights of airline u
N% number of flights of airline u
N; number of routes of flight i
qij RTCof route j of flight i

Q;; setof FCAs along route j of flight i

Decision variables

6;j = lifroute j is assigned to flight i

d;; ground delay of flight i on route j

5 airborne delay of flight i on route

jatFCAk

a

c; total cost of route and delay
allocation for flight i

y maximum average airline cost
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Mixed-Integer Linear Program (MIL

N
min « c; tw
é,d,a,y Z l Y
l:].Ni
s.t. Ci:z qijaij+dij+2 2 Clg{j ) i:1,...,N
j=1 kEQU

P) formulation
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N

Input data
: N number of flights
min « C; + wy
5,d,a,y — N4 number of airlines
=1 .

: . A% set of flights of airline u
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Mixed-Integer Linear Program (MIL

N
guin, @ ) ci+ay
s.t. Ci:z qij5ij+dij+2 2 (lg{j ) i:1,...,N
y 25 ) u=1,..,N
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Mixed-Integer Linear Program (MIL

N

gyin, @ D, i + oy
s.t. Ci:z qij5ij+dij+2 2 (lg{j ) i:1,...,N
j;fl ICES)Lj
y 25 ) u=1,..,N
N; [EAY
Egijz , i=1,..,N
=1

’)

formulation

Input data

N number of flights

NA
Au
Nu
N;
dij

number of airlines

set of flights of airline u
number of flights of airline u
number of routes of flight i

RTC of route j of flight i

set of FCAs along route j of flight i

Decision variables

k
Ci

y

= 1 if route j is assigned to flight i

ground delay of flight i on route j

airborne delay of flight i on route

jatFCAk

total cost of route and delay
allocation for flight i

maximum average airline cost
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Mixed-Integer Linear Program (MIL

N

min « Z c; + wy
s,d,ay

s.t. Ci :Z qij5ij+dij+2 2 (lg{j ) [ = 1,

yz—z: C;, u=1,

Nu

N; iEAU

2611 =L L= 11

j=1

du+za{‘j<M6U, i=1,..,N;j=1,
ICE(]ij

P) formulation

Input data
N number of flights

N4 number of airlines
A% set of flights of airline u
N% number of flights of airline u
N; number of routes of flight i
qij RTCof route j of flight i
Q

Decision variables

ij set of FCAs along route j of flight i

6;j = lifroute j is assigned to flight i

d

k

jatFCAk

c; total cost of route and delay
allocation for flight i

y maximum average airline cost

ij 8round delay of flight i on route j

airborne delay of flight i on route
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Mixed-Integer Linear Program (MIL

N

min « Z c; + wy
s,d,ay

ilei

s.t. Ci = Z qijaij + dij + 2 2 (lg{j ) I = 1, ,N
yZW.E Ci, u=1,...,NA
N; [EAY
2517 —1, i=1,..,N
j=1
du+za{‘]<M6U, i=1,..,N;j=1,.,N

kE.Qij

If flights i and f cross FCA k within its period of activity,
then their ETAs should be separated by at least minimum
spacing.

P) formulation

Input data
N number of flights

N4 number of airlines

A% set of flights of airline u

N% number of flights of airline u
N; number of routes of flight i

qij RTCof route j of flight i
Q;; setof FCAs along route j of flight i

Decision variables

6;j = lifroute j is assigned to flight i

d;; ground delay of flight i on route j

k

i airborne delay of flight i on route

jatFCAk

a

c; total cost of route and delay
allocation for flight i

y maximum average airline cost
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Test case

e July 14th 2015
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Test case

e July 14th 2015
* Four FCAs:

* Newark Liberty International
Airport (EWR)

e SHAFF (north gate)
 PENNS (west gate)
e DYLIN (south gate)

* One hour period of activity
* 0800Z-0900Z

PENNS
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Test case

PENNS § EWRQ@L~]

e July 14th 2015
* Four FCAs:

* Newark Liberty International
Airport (EWR)

e SHAFF (north gate)
 PENNS (west gate)
e DYLIN (south gate)

l ,. /' “{“ f,',; 4")‘573
* One hour period of activit ~ B gy e .
P V' b Bst )N e,

DYLIN

* 0800Z-0900Z
* 20 flights destined at EWR o N P 1

. . VA= vl
e 2-3 options for each flight ( A X eyt
* FCA crossing times within — Route to North Gate‘ Y Y
0800209007 T AN G

= Not routed through an arrival \:\;\1 ‘ KFLL 9/19



Test case: initial demand
T T

r L7 L6
0850 o LS U2
S1
o ® g Ko
L6 |
® Si : i; ® Fl CTOP
s | | g 242 — period of
Ul . .
UTC | os20 B Q1 L3 Rl activity
. ' ' “ F1 @ _
Time V1
® Ul c Q2 ®,
0810
L3 pla A —1:
eVl - Al
0800 ® Q1 “ Rl D1 B
_ Non-active
time periods

SHAFF PENNS DYLIN EWR
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Test case: initial demand

0850

U2
0840 'Il;s ':gié
® S1
0830 .
UTC 0820
Time o Ul
0810
® 13 ® 14
® Vi
0800 ® Q1

SHAFF PENNS
1 6

® L7
® L5

© F1
¥

~ Rl

DYLIN

6

oo 0
L7

t.Ls U2 L6
®s1

® Fl

2 Al
-4 gl L4
. a

\8
®12

—11

o Al

D1

EWR

20

—_

CTOP
— period of
activity

>Non-active

=> Capacity (flights/hour)

time periods
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Test case: initial demand

UTC
Time

A

q

0850

U2
o840 © 18

0830

0820

® Ul

0810
® L3

0800

SHAFF

15

'CI

® 51

® L4

® Vi
® Q1

PENNS
6

10

® L7
® 15

© F1
¥

~ Rl

DYLIN
6

10

L6
t' Ls U2
®s1

® Fl

2 Al
'glm

Vi
®12
L1
o Al
D1

EWR
20

—_

CTOP
— period of
activity

_ Non-active
time periods

=> Capacity (flights/hour)
=> Spacing (minutes)




Efficiency metrics

Z ( RTC + Delay ;,5ynq + ZZ Delay )
flights FCAs ar

Estimated cost : cost yielded by the allocation algorithm
Actual cost = Ground cost + Airborne cost
Ground cost = RTC + Ground delay

Airborne cost =2 x Airborne delay 11/19
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Efficiency metrics

Actual cost

A
| \

Z ( RTC + Delay ;,5ynq + ZZ Delay )
flights ‘ FCAs ar

] |\ )
| |

Ground cost Airborne cost

Estimated cost : cost yielded by the allocation algorithm
Actual cost = Ground cost + Airborne cost
Ground cost = RTC + Ground delay
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Efficiency metrics

Estimated cost (MILP)

Actual cost

A
| \

Z ( RTC + Delay ;,5ynq + ZZ Delay )
flights ‘ FCAs ar

] |\ )
| |

Ground cost Airborne cost

Estimated cost (RBS)

Estimated cost : cost yielded by the allocation algorithm
Actual cost = Ground cost + Airborne cost
Ground cost = RTC + Ground delay

Airborne cost =2 x Airborne delay 11/19



N

Efficiency of allocation methods - aEci oy

5)d)a)y

=1

Minutes

Estimated total cost 143 134
Actual total cost 201 134
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Efficiency of allocation methods
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Efficiency of allocation methods
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Resulting allocation
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Equity of allocation methods: cost share
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Equity of allocation methods: average airline cost
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Efficiency and equity trade-off

Maximum
average
airline cost,
minutes

30

25

20

10

130

134; 27 @
w =20
132 134

136

145:9 @

140; 14 @
w=1
a) —
138 140 142 144

Total system execution cost, min.

min
6,d,ay

N

::EE: Ci + wy

=1

146

148

150

16/19



Efficiency and equity trade-off

Maximum
average
airline cost,
minutes

30

25

20

10

N

ECL"FCU}/

min
8,d,a,y ¢
=1

134;27 @
w=0

145:9 @

w =

130 132 134 136 138 140 142 144 146 148 150

Total system execution cost, min.

16/19



Efficiency and equity trade-off
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Improved equity: average airline cost
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Future work

* Extend to larger test case
(longer period of activity, more flights)

* Predictability of developed method
(with demand and capacity uncertainties)

 Stochastic formulation of the optimization problem
* Exempted and pop-up flights

Contact: olga.p.rodionova@nasa.gov
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Traffic Management Initiatives (TMIs)
AFP CTOP (GDP + AFP + CDM)

W TN
}é" fz 3
, 3

/

~

Rty

| ‘ ) | x evc L lf’(;A'l:O;A — f /) k‘\\ \ F?}A64 —
e Arrival airport * Flow Constrained Area * Multiple FCA and
(FCA) multiple airports
* Ground delays => * Ground delays => EDCTs * Ground delays => EDCTs
* Expected Departure * Reroutes * Reroutes
Clearance Time * Specified by TFM * Trajectory Option Set
(EDCT) (TOS) => specified by

flight operators
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Resource allocation problem: overview

e What resources must e What allocation criteria e Which allocation

be allocated? are to be used? algorithm is to be used?
* =>FCA capacities <= |nitial Demand
. 0 15 2
* Ca paCIty-based Capacity re—duced 3 fllghts!15 mins Flight scheduling

allocation o T % <= through capacity-
- 0 60 based allocation

* Sector capacities

. s Resulting
» Slot-based allocation oo i i ! <= allocation
e GDP, AFP and CTOP
. Capacity: 3 flights/15 minutes Flight scheduling through
° Space'baSEd aIIocatlon => 3 slots/15 minutes slot-based allocation
* MIT, MinIT, TBFM => glot size = 5 minutes Hesailing

e . . . - . . . ® . ® . & ® & a"DCEtiDn
0 15 30 45 &0 75



RBSall: considering all FCAs simultaneously

* For each flight, calculate its Initial Arrival Time (IAT)

e For each route option from TOS, calculate the Estimated Arrival Time (ETA) at
its first (primary) FCA

* Chose the minimum among these ETAs
* Order flights based on their IATs in a priority list

* For each flight from the priority list, find the best (minimum-cost)
available route and delay allocation satisfying the spacing constraints
at all FCAs along this route at the same time



RBSall scheduling example
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RBSall scheduling example
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RBSall scheduling example

q,=20
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Execution cost = 20
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MILP formulation: full
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