Machine Learning for Slow but Steady Interplanetary Construction

Adrian Agogino

Problem Statement

- Can a set of construction robots build useful structures on other planets given a long period of time
- Large number of robots (dozens)
- Robots are small
- Construction time up to 20 years
- Simple structures:
 - Landing pads
 - Pyramid type buildings

Challenges

- Robots need to coordinate
- Robots need to cooperate
 - Not large enough to operate entirely in parallel
- Robot precision is low
- Raw material is poor
- Robots need to overcome failure
- Robots need to be autonomous

Multiagent Learning System

- Allows for coordination of multiple agents
- Assumes agents are imperfect and low precision
- Adapts to agent failures
- Handles uncertain environments
- Learns instead of being told what to do
- (Can be slow)

Agent Learning

Temporal Credit Assignment

Temporal Credit Assignment Problem (RL)

Structural Credit Assignment

Both Credit Assignment Problems

- Can be difficult to assign credit through time and to the right agent.
- Convergence possible through "team games" but very slow.
- Reward shaping can improve prospects
 - Want shaped reward to improve "signal."
 - Want shaped reward to promote coordination.

Will it Work for Planetary Construction?

- Is enough coordination possible?
- Can learning be independent of operators?
- Will small rovers have enough capabilities?

Tensegrity Robots

Agent

In Action

Tensegrity Control Learning

Tensegrity Construction

Will it Work?

- Collapsible and light weight
- Scalable
- Can be highly redundant
- (Learning can be difficult)

Thank You

1 Y 1