Zeolite Degradation: An Investigation of CO₂ Capacity Loss of 13X Sorbent

Roger Huang, KBR Wyle Tra-My Justine Richardson Logyx LLC Grace Belancik NASA ARC Darrell Jan NASA ARC John Hogan NASA ARC Jim Knox NASA MSFC

- Background
- Experimental Method
 - Suspected causes of degradation
- Results and Observations
- Future investigations

Outline

- Carbon Dioxide Removal and Compression System (CRCS)
 - 4-bed molecular sieve system
 - Temperature Swing Adsorption and Compression (TSAC)
 - Stage 1 CO₂ capture at 2600ppm
 - Stage 2 CO₂ storage and compression

Background

CRCS Stage 1 early CO₂ breakthrough

Suspected Causes of Degradation

- Chemical Degradation
 - Lab compressed air source (Pressure Swing Adsorptive (PSA) filtered)
 - Pump Oil
 - Vacuum o-ring greases
 - Krytox LVP, Krytox 240AC
- Physical Degradation
 - Rapid heating
 - Removal procedure via vacuuming

Experimental Cases

- Chemical Contamination
 - Lab compressed air
 - Sorbent loaded into $\frac{1}{2}$ tube cell and exposed to 10SLPM of lab air source for 120 hours
 - Edwards Ultra Grade 19 pump oil
 - Sorbent loaded into $\frac{1}{2}$ " tube cell and ~10g of oil dripped into cell onto beads
 - Krytox LVP
 - ~5g of grease applied to inside of $\frac{1}{2}$ " tube cell and then loaded with sorbent
 - Krytox 240AC
 - ~5g of grease applied to inside of $\frac{1}{2}$ " tube cell and then loaded with sorbent

hours at 280°C to simulate CRCS bakeout

- Physical Degradation

 - vacuum flask

Chemical Contamination

- After simulated system bakeout, all samples activated on ASAP 2020
- 350°C activation temperature

- A. Edwards Ultra 19 Pump Oil
- B. Krytox LVP
- C. Krytox 240 AC
- D. Lab compressed air
- E. Degraded CRCS Stage 1
- F. Control

Chemical Contamination

	Table 1: Physical Degradation Test Matrix														
Vacuums															
Bakeouts		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	X	X	X	X	X	X	X	X	X	X				
	2											X			
	3												X		
	4													X	
	5														X

Physical Degradation

Physical Degradation

Results

- Chemical Degradation
 - After activation at 350°C, Krytox LVP and 240AC samples exhibited dark speckling
 - Pump Oil contaminated sample also showed color differences
 - PSA shows no detectable degradation
 - None of the contaminated samples showed the type of capacity loss seen by the CRCS Stage 1 sample

Physical Degradation

- Three analyzed cases of vacuum/bakeout cycling
- None show the type of capacity loss seen by the CRCS Stage 1

Other considerations

- Possible that a slug discharge of hydrocarbons through the PSA beds during time of CRCS testing contaminated the sorbent
- Micropore structure degradation due to prolonged activation in a humid environment

Acknowledgements

- Gary Palmer, NASA Ames Research Center
- Dr. Armin Ebner, University of South Carolina Chemical Engineering
- Dr. Jim Ritter, University of South Carolina Chemical Engineering
- Gregory Cmarik, NASA Marshall Space Flight Center
- Dr. Arturo Hernandez, University of Puerto Rico, Mayaguez Chemical Engineering

