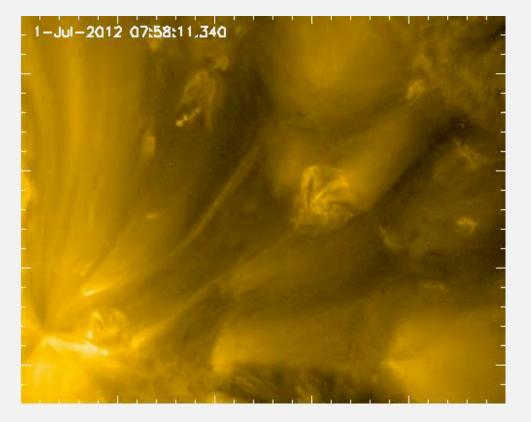
Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation

Navdeep K. Panesar¹,

Alphonse Sterling¹, Ronald Moore^{1,2}

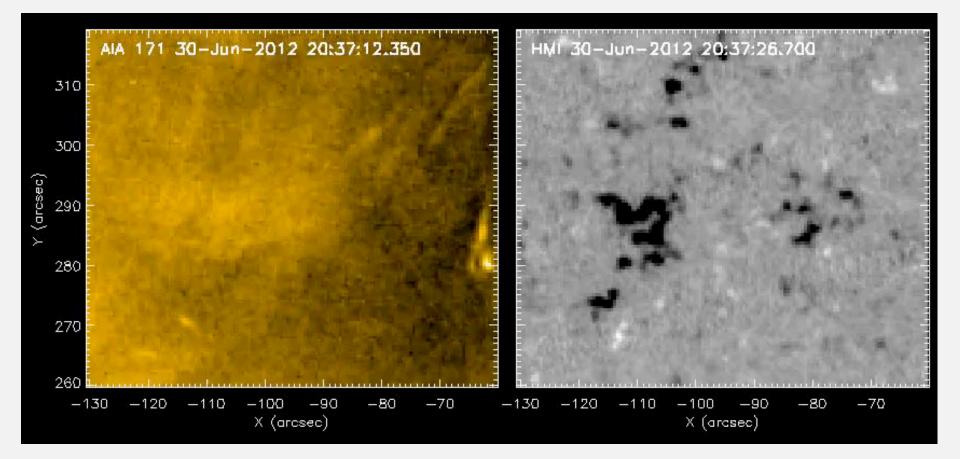

¹NASA, Marshall Space Flight Center, Huntsville, AL ²Center for Space Plasma and Aeronomic Research (CSPAR), UAH, Huntsville, AL

Background

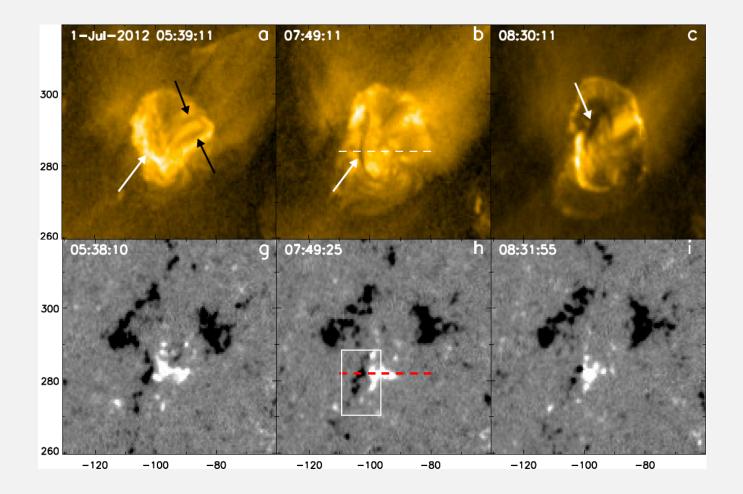
- Coronal jets are frequent magnetically channeled narrow eruptions.
- All coronal jets observed in EUV and Xray images show a bright spire with a base brightening, also known as jet bright point (JBP).
- Recent studies of jets show that coronal jets are driven by small-scale filament eruptions (e.g. Hong et al. 2011, Shen et al. 2012, Adams et al. 2014, Sterling et al. 2015).

 We recently investigated the triggering mechanism of ten ondisk quiet-region coronal jet eruptions and found that magnetic flux cancellation at the neutral line of *minifilaments* is the main cause of quiet-region jet eruptions (*Panesar et al. 2016*).

What leads to the formation of these pre-jet minifilaments?

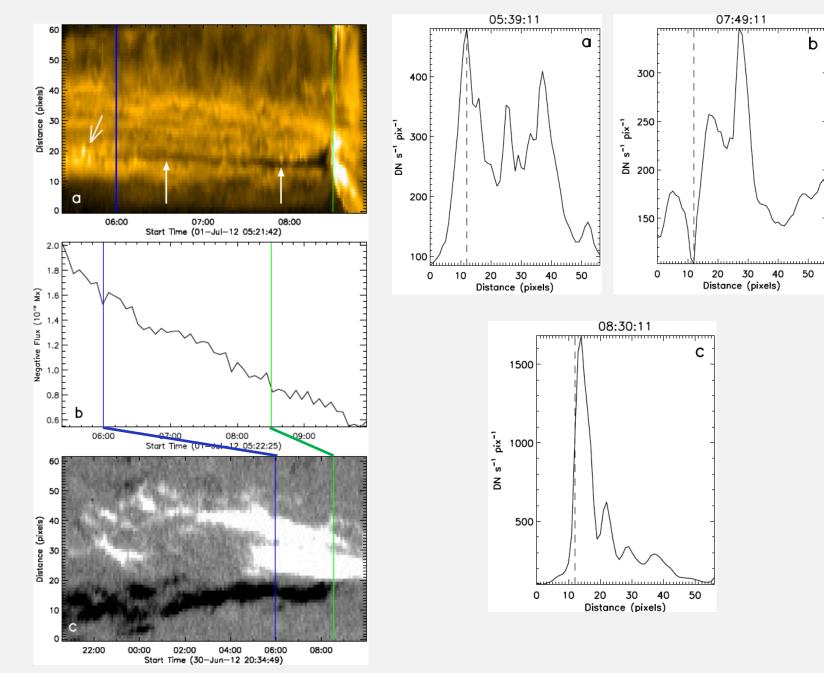

• We investigate the magnetic field evolution that leads to pre-jet minifilament formation

Measured parameters for the observed quiet-region pre-jet minifilaments:

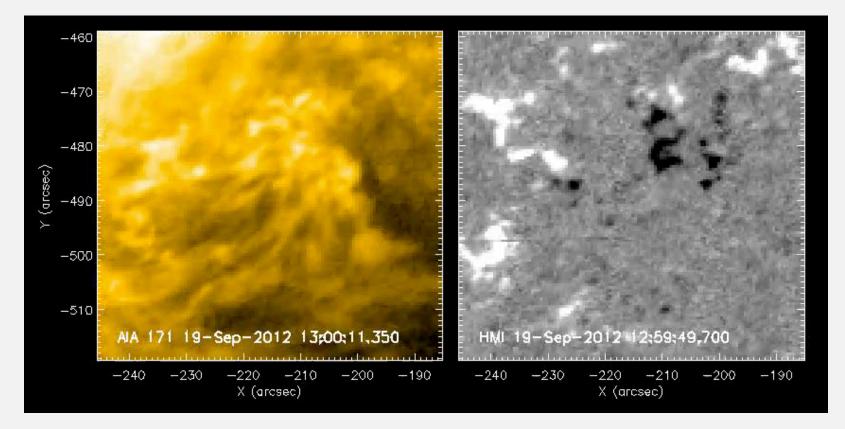

Event	Minifil. formation ^a	Minifil. eruption ^b	Location ^c	Duration of ^c	Width of ^d	No. of ^e	Φ values ^f	% of Φ^{g}
No.	time (UT)	time (UT)	helio. cord.	minifil. (hrs)	minifil. (km)	Jets	10 ¹⁹ Mx	reduction
J1	2012 Mar 21 22:46	2012 Mar 22 04:46	S09, E29	6	2000±500	1	1.6	20 ± 6.8
J2	2012 Jul 01 05:58	2012 Jul 01 08:29	N12, E02	2.5	1500 ± 200	1	1.9 ^h	20 ± 7.3
J3	2012 Jul 07 — ⁱ	2012 Jul 07 21:31	S15, E12	_	2200 ± 200	1	_	_
J4	2012 Aug 04 05:14	2012 Aug 05 01:58 ^j ,	N07, E30	21	2500 ± 500	2	5.8	14 ± 4.6
		2012 Aug 05 02:20						
J5	2012 Aug 10 19:43	2012 Aug 10 23:03	S31, E11	3.2	1500 ± 200	1	0.9	27 ± 6.1
J6	2012 Sept 19 17:15	2012 Sept 20 22:52	S34, E11	34	2500 ± 500	2	3.0	9 ± 5.3
J7	2012 Sept 21 00:51	2012 Sept 21 03:33	S34, E08	3.5	2500 ± 500	1	1.7	38 ± 2.6
J8	2012 Sept 21 23:55	2012 Sept 22 01:25	N01, E20	1.5	1500 ± 500	1	0.9	38 ± 5.5
J9	2012 Nov 11 02:56	2012 Nov 11 13:08,	S23, E01	49.5	2500 ± 500	4	_k	-
		2012 Nov 12 17:06,						
		2012 Nov 12 21:34,						
		2012 Nov 13 04:20						
J10	2012 Dec 13 08:06	2012 Dec 13 10:11,	S01, W01	2.5	1600 ± 200	2	1.2	7.0 ± 8.3
		2012 Dec 13 10:36						

Panesar, Sterling, Moore, 2017a, ApJ, 833, 131

Minifilament Formation (J2)

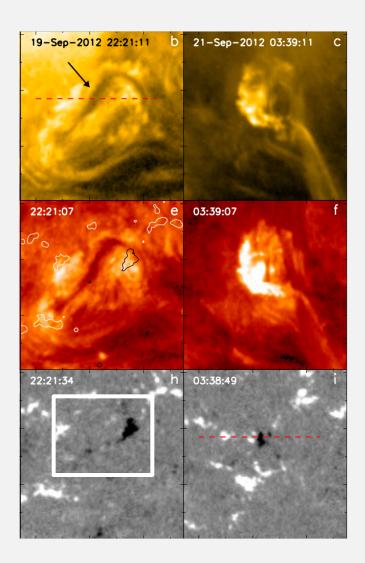


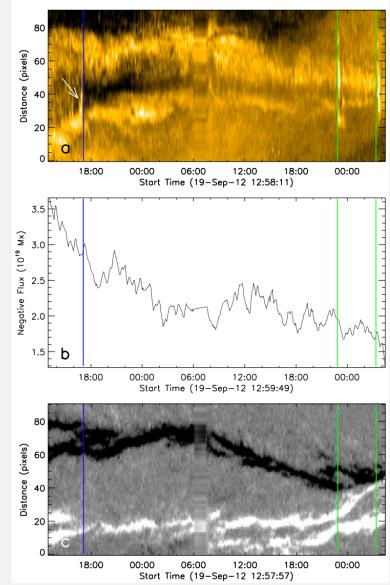
Minifilament Formation (J2)



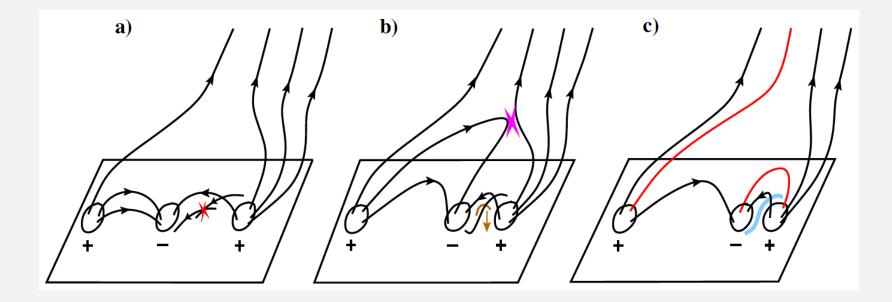
- Duration of minifilament ~ 2.5 hours.
- Brightenings appear at the location where the minifilament subsequently forms.

Minifilament Formation and Flux Cancelation


Homologous Jet Eruptions (J6 and J7)



- We also observe more than a single jet from the same neutral line. A minifilament erupts and drives a jet, reforms/reappears at the same location, and then again erupts, driving the next jet.
- This process occurs as flux cancelation is ongoing and continues until all the minority-polarity flux vanishes.
 Eventually, the neutral line disappears, no more minifilaments and homologous jets are produced.


Homologous Jet Eruptions (J6 and J7)

J6 J7

Schematic Illustration of Observations

- Continuous flux cancelation between a minority-polarity flux clump and a majoritypolarity flux clump builds a highly sheared minifilament field, leading to the formation of a minifilament.
- These results are consistent with the models for the formation of the field of typical solar filaments (van Ballegooijen & Martens 1989; Martens & Zwaan 2001).

Summary

- We examined in detail the formation mechanism of ten random on-disk quiet-region pre-jet minifilaments.
- We found that flux cancelation is the key agent responsible for building a highly sheared minifilament field, leading to the formation of minifilaments. Sometimes continuous flux cancelation results in homologous eruptions.
- Persistent flux cancelation at the neutral line finally destabilizes the field holding the minifilament, and that field then erupts to make a coronal jet.
- Our observations supports that quiet region flux cancelation results in both the formation of the pre-jet minifilament and its jet-driving eruption.