Low C-SWaP Well Clear Trade Study Preliminary Results

Gilbert Wu Seungman Lee Devin Jack

UAS INTEGRATION IN THE NAS

Objectives

- Investigate trade space for Detect and Avoid (DAA) Well Clear definition for UAS with low cost, size, weight, and power (Low C-SWaP) sensors that detect and track non-cooperative aircraft
- Recommend candidate DAA Well Clear (DWC) definition(s) for the SC-228 to consider

- Between non-cooperative aircraft and UAS with low C-SWaP sensors that are
 - Below 10,000 ft and above 500 ft AGL
 - During extended operations in classes D, E (non-terminal), or G (non-terminal), or
 - During transit operations in classes B and C
 - For UAS within a certain speed range

Schedule

- Preliminary Results: December 5, 2017 at SC-228 F2F
- Final results: February 20, 2018

• Unmitigated collision risk

- The probability of a near mid-air collision (NMAC) given a loss of DWC
- Denoted as P(NMAC|LoWC)
- Maneuver initiation point
 - Latest point for ownship to maneuver to maintain DWC
- Bearing, elevation, range, and closure rate distribution of intruders at the Loss of Well Clear (LoWC)
- CPA miss distance/time given LoWC

- DWC types and threshold values (* for threshold)
 - DWC1: h*, HMD*, modTau*
 - DWC2: h*, HMD*, t_{pz}*
 - DWC3: Static hockey puck: h*, R*
 - DWC4: Dynamic hockey puck: h^* , $R^*(rdot) = a^* + rdot x b^*$

Туре	h* (ft)	HMD* (ft)	modTau* (sec)
DWC1	450	[1000, 9000]	[0, 35]
Туре	h* (ft)	HMD* (ft)	Tpz* (sec)
DWC2	450	[1000, 9000]	[0, 35]
Туре	h* (ft)	R* (ft)	
DWC3	450	[1000, 9000]	
Туре	h* (ft)	a* (ft)	b* (sec)
DWC4	450	[1000, 6000]	[0, 20]

ACES Generated Encounters

- 3.3 million encounters
 - between projected UAS trajectories and recorded VFR traffic from 21 days in year 2012
 - Cooperative aircraft regarded as surrogates of non-cooperative
- About 60% of the encounters are considered "low C-SWaP"
- 708 NMACs (for low C-SWaP)
- Number of LoWCs varies

Speed Distribution of Intruder

• Modified Tau DWC

- Total 45 settings
- ModTau threshold (5 levels): 0, 8, 15, 25, 35 (sec)
- HMD threshold (9 levels): 1000, 1500, 2000, 2500, 3000, 3500, 4000, 6500, 9000 (ft.)
- Altitude threshold (1 level): 450 (ft)
- Time to Protected Zone (TPZ) DWC
- Static Cylinder DWC
- Dynamic Cylinder DWC

- P(NMAC|LoWC) is between 2% and 5%
 - Phase 1 P $\sim 2.2\%$
 - Previous Lincoln Lab work recommended 5%
- Maneuver initiation point range as small as possible

Unmitigated Collision Risk P(NMAC|LoWC)

Maneuver Initiation Point

- 2PAIRS
- Head-on, co-altitude encounter
- Only horizontal maneuver is considered
- Constant roll rate, steady-state turn rate, ownship speed, and intruder speed
- range = f (DWC, ownship speed, intruder speed)
- UAS (Ownship) speed 40 to 100 kts
- Turn rate 6 deg/s (3 and 12 deg/s results also looked at)

"Sweet Spot"

- "Sweet spot" HMD* 2000 to 2500 ft, modTau 0 to 15 sec
 - P(NMAC|LoWC) ~ 5%
 - Maneuver initiation range ~ 2 nmi (given 6 deg/s turn rate)
 - Compared to low C-SWaP radar range that may be below 3 nmi
- To further reduce range requirements, we may
 - Go above 5% for P(NMAC|LoWC)
 - Require a higher turn rate at 40 kts (e.g., 12 deg/s)
 - Increase minimum ownship speed from 40 kts
 - Mandate a minimum turn speed > 40 kts for ownship
- Other considerations
 - Range and bearing distribution trade-off

- ACES encounter analysis
 - Apply additional filters
 - Analyze additional performance metrics
 - Analyze results from other DWC types
 - Analyze results from Phase 1 UAS (speed and altitude)
- Encounter model
 - Parallel work to ACES analysis
 - Comparison to ACES results for validation
- Candidate DWC definitions for further evaluations
 - May propose more than one (possibly two) definitions varying by P values
- Fast time simulation 2 for alerting and sensor (May 2018)
- HITL for low C-SWaP (Nov. 2018)

Backup Slides

Encounter Model

- Assumptions
 - Phase 1 VFR traffic
 - Same encounter set used to define SARP WCV definition
 - Enables comparison with previous results
 - Encounters are between two aircraft, where one or both aircraft do not have transponders, or both are VFR (1200 code)
 - Looking at full encounter set (<300 kts) and subset of encounters with speeds < 100 kts

Results are preliminary. No conclusions should be drawn from the results until they can be further analyzed and understood.

- DWC3
 - P(NMAC|LoWC) vs. R* using ACES
 - P(NMAC|LoWC) vs. R* using the encounter models

- Criteria
 - Manned aircraft speed: at or below 170 kts
 - UAS speed: between 30 and 100 kts
 - Altitude at or below 10,000 ft mean sea level (MSL)
 - Altitude at or above 500 ft MSL
- Additional filters to be implemented
 - Airspace class
 - Altitude above 500 ft above ground level (AGL)

• Can Phase 1 UAS have an alternative DWC for noncooperative aircraft? Can a single DWC be defined for both Phase 1 UAS and low C-SWaP UAS (for non-cooperative aircraft)?

- Well clear trade study (Fast Time 1)
 - Preliminary Results briefing: December 5, 2017 at SC-228 F2F
 - Final results briefing: February 20, 2017
- Alerting and surveillance uncertainty (Fast Time 2)
 - Planning starts in December 2017
 - Data collection May 2018
 - Final results September 2018
- HITL
 - Planning starts in April 2018
 - Data collection October 2018
 - Final results February 2019
- Closed loop (Fast Time 3)
 - Planning January 2019
 - Data collection June 2019
 - Final results November 2019

VFR Traffic

7 14

21 28

6 13

20 27

21 days across 4 seasons in 2012 (24 hours each day)

	J	anu	lary	201	2 _	
Su	Μ	Tu	W	Th	F	Sa
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
		Ju	ly 20	012		
Su	М	Ju Tu	ly 2 0 W	012 Th	F	Sa
Su 1	M 2	Ju Tu 3	ly 2 (W 4	012 Th 5	F 6	Sa 7
Su 1 8	M 2 9	Ju Tu 3 10	ly 20 W 4 11	012 Th 5 12	F 6 13	Sa 7 14
Su 1 8 15	M 2 9 16	Ju Tu 3 10 17	y 20 W 4 11 18	012 Th 5 12 19	F 6 13 20	Sa 7 14 21
Su 1 8 15 22	M 2 9 16 23	Jul Tu 3 10 17 24	y 20 W 4 11 18 25	012 Th 5 12 19 26	F 6 13 20 27	Sa 7 14 21 28

- Manned IFR data: ASDI (Airspace Situation Display to Industry)
- Manned VFR data: 84th Radar Evaluation Squadron (RADES) Air Defense Radar Data
 - Both cooperative and non-cooperative VFR traffic that satisfy speed range (<170 kts) and target airspace (< 10,000 ft and non-terminal operations) will be used

UAS Missions

Number	Mission Types	Airspace	UAS Group	Cruise Altitude	Cruise Speed (KTAS)	Flight Pattern
1	Aerial Imaging and Mapping	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Aerosonde Mk 4.7	3000 ft. AGL	44 to 51	Radiator-grid pattern or circular pattern
2	Air Qualtiy Monitoring	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Shadow-B (RQ7B)/NASA Sierra	4k, 5k, and 6k ft AGL	74 to 89	Radiator-grid pattern
3	Airborne Pathogen Tracking	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Shadow-B (RQ7B)/NASA Sierra	3,000 ft., 5,000 ft. and 10,000 ft. AGL	72 to 97	Radiator-grid pattern
4	Flood Inund. Mapping	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, Mode C Veil, E, and G	Aerosonde Mk 4.7	4,000 ft. AGL	46 to 51	Grid pattern
5	Flood Stream Flow	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, Mode C Veil, E, and G	Aerosonde Mk 4.7	4,000 ft. AGL	46 to 51	Grid pattern and/or along stream direction
6	Law Enforcement	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Aerosonde Mk 4.7	3,000 ft. AGL	44 to 51	Three types of pattern: 1) grid pattern, 2) random, 3) outward spirial
7	Point Source Emission	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, Mode C Veil, E, and G	Shadow-B	3,000 ft. AGL	72 to 80	Grid pattern and/or along stream direction
8	Spill Monitoring	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, Mode C Veil, E, and G	Shadow-B/Sierra	3,000 ft. to 13,000 ft. AGL	72 to 93	Up and down-wind flights in a radiator-grid pattern, Round-the- clock
9	Tactical Fire Monitoring	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	ScanEagle/Shadow-B	3,000 ft. AGL	72 to 75	Circular flight path following the perimeter of a wildfire
10	Traffic Monitoring	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Shadow-B	1,500 ft. AGL	58 to 84	Geo-spatial monitoring flight path
11	Wildlife Monitoring	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, Mode C Veil, E, and G	Aerosonde Mk 4.7	3,000 ft. AGL	44 to 51	Radiator-grid pattern
12	News Gathering	Flights depart from and return to a regional airport located within 40 nmi. of OEP 35 airports; Class D, E, and G (including Mode C Veil) with Class B or C transition	Aerosonde Mk 4.7	1,500 ft. to 3,000 ft. AGL	44 to 51	Random-path: e.g., police-chase; Circular orbit:

- It is assumed that unmanned aircraft will be equipped with onboard radar, active surveillance transponder (Mode C/S), and ADS-B surveillance system to detect cooperative and non-cooperative intruder aircraft.
- Types of intruders with different equipage
 - Intruders operating under IFR (Coopeative)
 - Intruders operating under VFR (Cooperative and Non-cooperative)

Intruder Aircraft	Transponder Equipage	Percentage
Cooperative AC 1	ADS-B Out (1090 or UAT)	71%*
Cooperative AC 2	Mode C transponder Only	14%*
Non-Coop AC	No Transponder (or Mode A transponder)	15%*

- Airspace Concept Evaluation System (ACES) and JADEM Fast-time Simulation Framework
 - Simulate NAS-wide air traffic operations of UAS, IFR, and VFR traffic

- Various realistic encounters between UAS and IFR/VFR manned traffic in civil airspace
 - Manned IFR traffic: ASDI (Airspace Situation Display to Industry) data
 - Historical cooperative and non-cooperative VFR traffic
 - The 84th Rader Evaluation Squadron (RADES) data
 - Proposed UAS Flights
 - 12 different types of UAS missions generated by Intelligent Automation Inc.
- UAS DAA Alerting and Guidance System [JADEM]
 - Higher fidelity surveillance model: Honeywell sensor models
 - DAIDALUS DAA alerting and guidance algorithm

Cooperative Traffic

