

backscatter after implementing our 1-D VAR ensemble technique

¹ Science Systems and Applications, Inc. ² NASA GSFC Code 614 ³ Universities Space Research Association ⁴ NASA GSFC Code 612 ⁵NASA GSFC Code 610.1 ⁶Earth System Science Interdisciplinary Center

Figure 10. GEOS-5 background (left) and analysis (right) for 1064 nm total attenuated backscatter (top) and extinction (bottom)

A33A-2337

SSAI)

	Utilizing GEOS-5
in:	ensembles, we are
orizontal resolution, output at 25 km	developing a 1-D VAR
igma levels in the vertical	ensemble approach to
nbers:	assimilate NRT CATS
S	observations of aerosol
izontal resolution	total attenuated
igma levels in the vertical	backscatter into GEOS-5
-	

- localization of a cloud-free profile, the GEOS-5 analysis drew
- We explored the impacts of varying the vertical localization
- After assimilating a segment of a CATS granule, the structure of an aerosol layer over the Arabian Sea was better resolved in the GEOS-5 analysis for both total attenuated backscatter
- Applying our assimilation technique to vertically constrain the feature mask that produces a dynamic lidar ratio that evolves

- Address "noisy" analysis increments in the free troposphere where both CATS and GEOS-5 aerosol loadings are low