

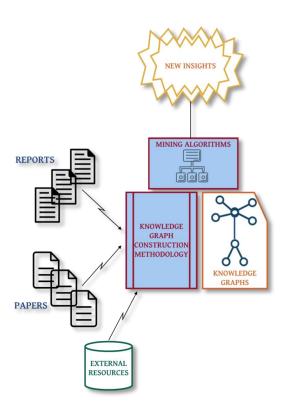
Building Scalable Knowledge Graphs for Earth Science

Rahul Ramachandran, Manil Maskey Patrick Gatlin (NASA MSFC) Jia Zhang, Xiaoyi Duan (CMU) J.J. Miller, Kaylin Bugbee, Sundar Christopher (UAH)

What is a Knowledge Graph?

- Knowledge Graphs link key entities in a specific domain with other entities via relationships.
- Researchers can then query these graphs to get probabilistic recommendations and to infer new knowledge.

Can we develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science?

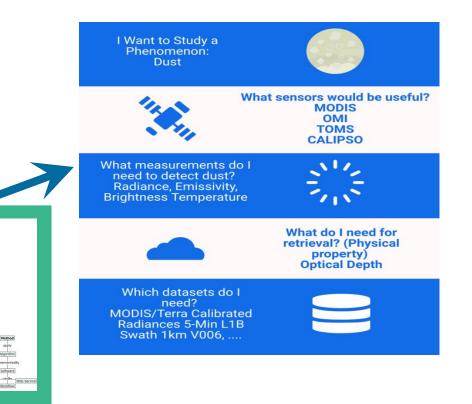


Why Research Community Needs Knowledge Graphs?

 Untapped resource of knowledge for a given domain is stored in papers and technical reports (unstructured).

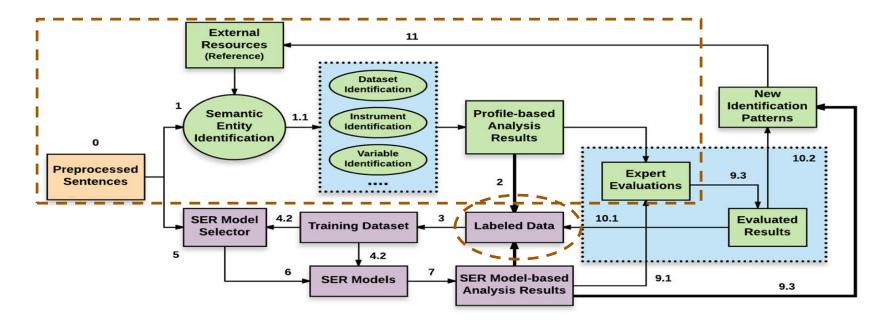
withm for MODIS satellite retrievals of aerosol optical thickness ov atmosphere: Implications for air quality monitoring in China approach 2011, Stepher Sourr¹¹, Yappane Wang¹⁰, Esan Dury¹⁰

• Difficult to extract and infer knowledge at scale



3

Methodology to Build Knowledge Graphs

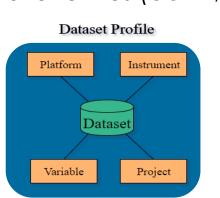


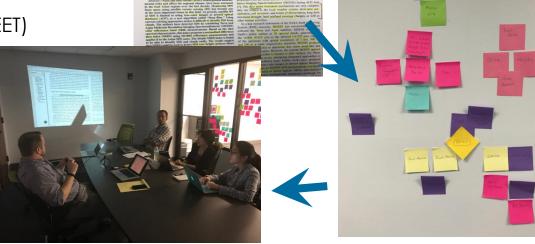
- Consists of two stages
 - Development of Heuristic algorithms to perform Semantic Entity Identification (Phenomena, Dataset, Instrument, Variable (Physical Property)...) to assist human experts in building training data [Steps 0-2] [Focus of this Poster]
 - Use Deep Learning Algorithms to improve results [Steps 3-7]

Heuristic Algorithm Development Strategy

- Goal:
 - Develop a set of algorithms to extract different semantic entities to build a training dataset
 - Phenomena, Property (Variable), Process, Projects, Instruments, Places
 - 2. Develop "profiles" to march relevant datasets to papers
- Explore the use of existing taxonomies (GCMD, CF, SWEET)

- Use curated set papers as a benchmark for a specific topic – "Airborne Dust Retrieval from Satellites"
- Experts manually extract key entities from these papers

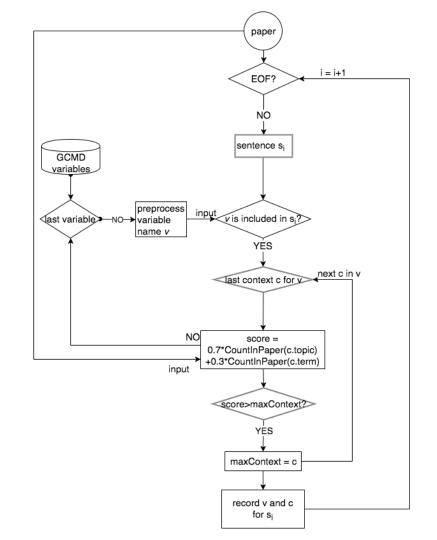




Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements

GCMD Variable Extraction Algorithm

- Match variable name
- Some variables appear in the collection multiple times
 - Find the most related context:
 - 0.7*topic_count +
 0.3*term_count



Extraction Results

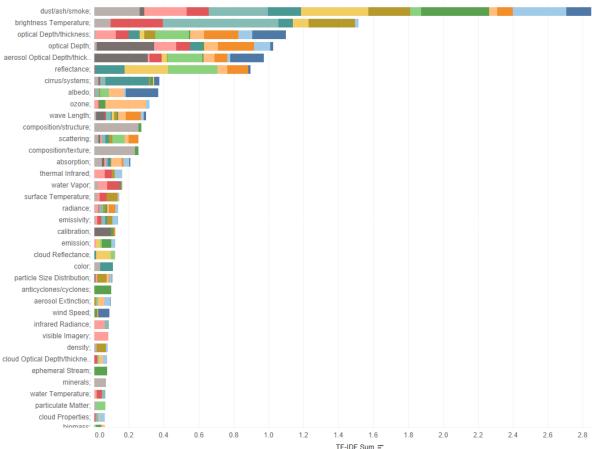
Good:

- TF/IDF better than total counts
- Brightness temp is ranked higher than in the total counts result
- Uncovered errors in paper: "Dust has a higher albedo at 12 microns instead of 11"
 - Should be temperature, not albedo

Bad:

- GCMD does not differentiate between entity types: physical property, phenomena etc
- Emissivity and radiance are important properties but are ranked low
- Dust/ash/smoke gives big picture but not really useful for analysis

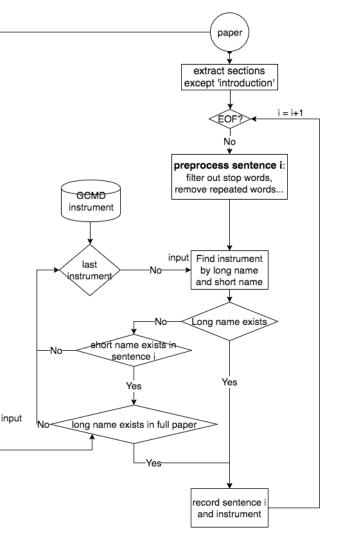
GCMD Variable TF-IDF



Instrument and Project Extraction Algorithm

Entity name: short name (S), long name (L)

- Instrument and project extraction from each sentence:
 - if find L, record;
 - $\circ~$ if find S, check L in full text



Extraction Results

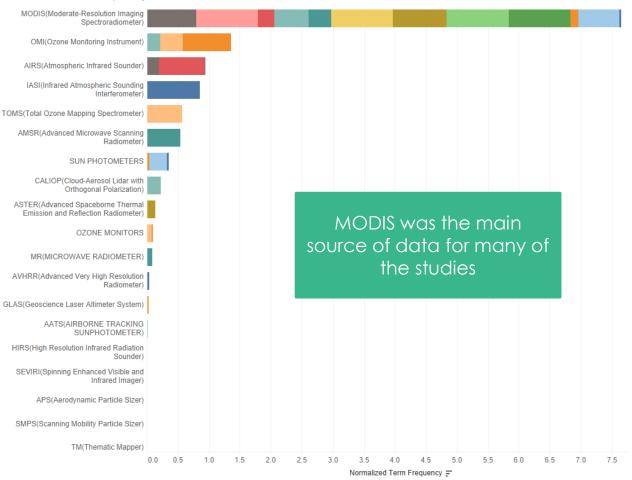
Good:

 MODIS/OMI are top instruments for dust

<u>Bad:</u>

- MR (Microwave radiometer from GCMD) incorrectly matched with AMSR related sentence
 - "The AMSR-E is a conical scanning total power passive <u>microwave radiometer</u> sensing (brightness temperatures) at 6 frequencies ranging from 6.9 to 89.0 GHz."

Instrument Term Frequency



SWEET Phenomena

Good:

- A few of the papers talk about differentiating cirrus clouds from dust
- Dust storm in top 4

Bad:

- Quite a few don't even appear to be phenomena
 - Thermal, decrease, layer, etc...
- Redundant extraction

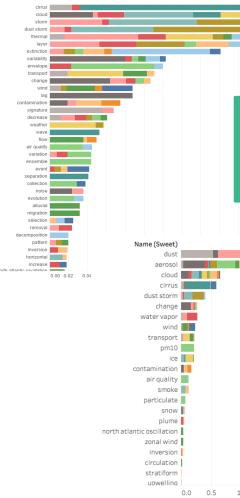
Curated SWEET Phenomena

Good:

 Top ~7 results make sense scientifically

Bad:

- Still too generic to be helpful
- Contamination, transport may be helpful but not without context



SWEET Phenomena

A few extractions seem redundant and some extractions aren't even phenomena

Improved results and can be used for extractions

4.5

40

5.0

1.5

Location extraction using named entity recognition (NER)

Good:

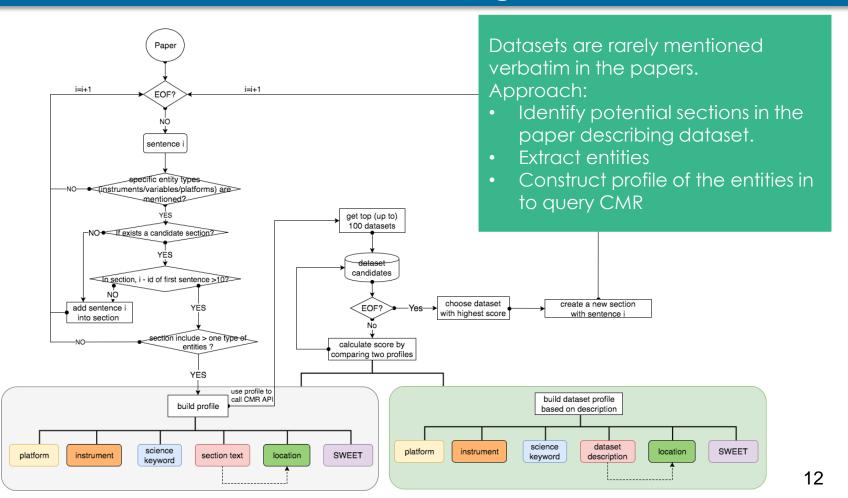
- Many of the locations are deserts or regions where deserts are located.
- Majority of the studies took place in China.

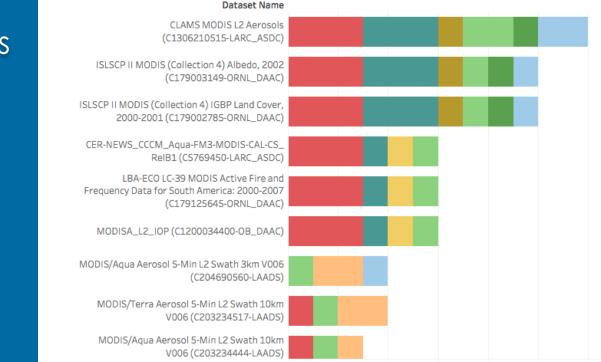
Issues:

- Some of the locations are very general (Earth, Atlantic, etc...)
- IR (Infra Red) acronym confused for Iran
- Redundancy: some locations mean the same thing but are worded differently (Mongolia, Inner Mongolia)

Locations

Dataset Extraction Algorithm





Extraction Results

<u>Good:</u>

- Most of the datasets are dust or aerosol related
- Lists all MODIS datasets

<u>Issues:</u>

- Some datasets don't make sense for dust studies
- Slight differences in the API query can provide very different results

- MODIS L1B data is what is used on mosot of the papers
- Dataset extraction results depends on Instrument/platform context and the precision of other entities extracted

Lessons Learned

- Semantic entity identification is a difficult problem and heuristics based algorithms are brittle
- Use of existing taxonomies is helpful for specific entities (instruments/platforms) and less helpful for others (physical property/phenomena..)
 - Quality of the taxonomy impacts extraction results
 - CF is the least useful
 - SWEET covers most concepts and has the best potential for use
- Dataset profile approach is dependent on both the metadata and entity extraction quality
 - Metadata creators view dataset keywords differently than dataset users

Next Steps: Begin Machine Learning Phase

- Use these algorithms to semi-automate training set generation
 - Have Atmospheric Science students provide URLs to 5-10 papers from their research area
 - Provide extractions and have students label results
- Train Deep Neural Networks for entity extraction
 - Evaluate results
- Build verb extraction and categorization to identify relationships between different entity types