Improving Access to NASA's Earth Science Data through Collaborative Metadata Curation

AGU Fall Meeting New Orleans, LA December 11, 2017

Adam W. Sisco¹, Kaylin Bugbee¹, Dana Shum², Katie Baynes³, Valerie Dixon³, and Rahul Ramachandran⁴

Rav

(1) University of Alabama in Huntsville, (2) Raytheon Company Riverdale,(3) NASA Goddard Space Flight Center, ESDIS, (4) NASA Marshall Space Flight Center

EOSDIS and CMR

- Earth Observing System Data and Information System (EOSDIS) manages NASA's Earth science data
- Ever growing collection of data is archived and distributed by 12 Distributed Active Archive Centers (DAACs)
- Nearly 7,000 collections and 370 million granules are described by metadata housed in the Common Metadata Repository (CMR)
- Data is described using a number of different metadata standards, and core elements of each standard are mapped to and from a common model the Unified Metadata Model (UMM)

Earthdata Search

- The Earthdata Search Client uses metadata in the CMR to present users with the information they are looking for and hand users off to more specific applications
 - Are users finding the information they are looking for? If not, why?
 - Are users being handing off to more specific applications? If not, why?
- Poor quality metadata is often the answer
- The CMR functions best when the metadata it houses is complete, consistent, and accurate
- Let's examine real examples of "less than ideal" metadata and the consider the consequences

- Can I access the data via direct download?
- Served correct data?
- Served all data requested?

- Does the metadata enable users to be handed off to online documentation?
- User's guides, README files, ATBDs, FAQ pages, product quality assessments, etc.

What is metadata curation?

Traditional curation

Information Age web content curation

Digital curation "Digital curation involves maintaining, preserving and adding value to digital research data throughout its lifecycle."

"...curation enhances the long-term value of existing data by making it available for further high quality research."

Analysis and Review of CMR (ARC) Team

- All have been or currently are users of NASA Earth Science data for research applications
- Backgrounds in Earth science, atmospheric science, space science, and remote sensing
- Previous experience from the Climate Data Initiative (CDI)
 - Review of 850 metadata records for quality and accessibility

ARC's approach to digital curation

Compliance

- Required elements
- Controlled vocabulary
- Broken URLs
- UMM usage
- DOIs

Compliance + Content

- Accuracy
- Consistency across collections
- Addition of new information
- Comprehensibility
- Keyword relevancy

ARC Curation Process

ARC Curation Process

Stakeholders collaborate to address both DAAC-specific and EOSDIS-wide issues

ARC Curation Process

- Priority classification scheme
 - Assist DAAC in formulating a strategic plan to address findings
 - Track resolution of issues
- ARC submits finding to DAACs
 - Overview report (Identifies DAAC-wide issues)
 - o Detailed reports (Identify record-specific issues)
- DAAC submits a report to ESDIS on a strategy and timeline devised to work off findings
- DAAC works off findings with the ARC and CMR teams available for support
- DAAC alters internal processes as needed to ensure adherence to EOSDIS policies and best practices moving forward

High	 Inaccurate, incomplete, or missing content Broken URLs and invalid collection-granule relationships
Medium	 Revisions of existing content Addition of new information
Low	Minor consistency issues

Phase I

- Mid 2016 to late 2017
- Records from all 12
 DAACs reviewed
- 1,959 collections reviewed
- GHRC, ASF, and CDDIS
 fully reviewed
- Supported CDDIS and SEDAC in the generation of brand new collection and granule metadata

ARC Collection Reviews Ending December 2017

Key Outcomes from Phase 1

• Evaluation of updated metadata for ORNL and SEDAC

SEDAC

Brand new granule metadata achieved a passing rate of 94% (Average initial granule passing rate is 65%)

Phase II

- ARC reviews will transition to an online dashboard environment
 - Improve ARC/DAAC communication
 - Enable automated metric tracking
- Implement a more strategic approach to ARC delivery of findings
- Track DAAC improvements from Phase I
- Improve UMM documentation and provide new reference resources for metadata authors
- Document and disseminate best practices that have emerged from the curation effort

Questions

Adam Sisco

adam.sisco@nsstc.uah.edu

Scratch Slides

ARC Team

CMR Team