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Motivating questions
1. How does the topography of airless bodies evolve?  

2. What is the relative rate on the Moon and Mercury?

3. Can we constrain the age of features and units from their 
topography? 

LROC NAC Synthetic Perspective of North Ray Crater (50 My old)



Background: Simple craters have
a known and self-similar initial form

Linné Crater, 2.2 km diameter
(LROC; Garvin et al., 2011)

Pike 1977:  d/D of fresh craters is ~0.2. 

Note: New LROC papers (Daubar, Mahanti, Stopar) 
have updated d/D for craters <200-400 m.



Background: Diffusion and Cratering

“…[impact cratering] is analogous, but generally at a larger scale, 
to the effect of a raindrop …” 

Alan Howard, 2007 (Geomorphology)

North Massif, Apollo 17

Soderblom (1970)



Topographic Diffusion & Crater Degradation
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Methodology and Data Analysis
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Map all craters D=800m to 5 km

Mare inside Tsiolkovsky Crater 

Extract topography for each crater



Methodology and Data Analysis
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Data extracted with Terrain Camera (TC) stereo dtm (~7 m/px).
Results from LOLA are agree, though sparse sampling is a challenge.



 Mapped, extracted topography, and 
fit diffusion profiles (in 2D) for 
13514 craters on the Moon.

 Solve for three parameters: 

 H0:  “zero value” for surrounding 
elevation

 D0: initial diameter  

 κt: Degradation state 

 Typical fitting uncertainties: 

 κt is ~2.5%

 D0 is ~0.5%

Fitting Diffusion Profiles



N(800m):  Crater density number of 
D≥800 m craters  per 103 km2

Crater Density on the Lunar Maria



N(800m):  Crater density number of 
D≥800 m craters  per 103 km2

Computed in 50 km radius moving neighborhoods

Crater Density (Detail)

Factor of 10× difference in crater density



Degradation State versus Crater Density
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Degradation State versus Age
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Fassett and Thomson, 2014
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Diffusivity and Erosion History

 Typical diffusivity (at km-scale) over last  ~3 Gyr is  κ~5 m2/Myr.

 Diffusivity is ~200× less than what is measured in the western US 
(e.g. κ~1 m2/Kyr; Colman and Watson 1983).

 Reminder: Erosion Rate, dh/dt = κ∇2h.

 Median erosion/gradation rate (|κ∇2h| ) = 0.3 mm/Myr.
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New insights into diffusive forcing

 Crater ejecta alone is insufficient 
to explain observed diffusion rate.

 Rate is too slow; equivalently, 
crater densities too high in 
saturation equilibrium.

 Indirect mobilization of materials 
by secondary effects, rather than 
just volume of ejecta alone.

 Effective diffusivity is size-
dependent (anomalous diffusion).

Soderblom (1970) March 17, 2013 impact crater, before and after

See Speyerer et al., 2016 

NASA/GSFC/ASU/LROC team



How does Mercury compare to the Moon?

Mercury (MDIS mosaic)Moon (LROC)



Two Sources of Mercury Topography: 
Mercury Laser Altimeter (MLA)



All Stereo Pairs
Wide Angle Camera, 

blue;

Narrow Angle Camera, 
red

All Stereo  Pairs
Source images

<100 m/px

Dots are 
processed Digital 

Terrain Models (DTMs)

Two Sources of Mercury Topography: 
MDIS Stereo Topography



Stereo Topography Examples

Get data or manuscript (Fassett, 2016):  http://www.calebfassett.com/mercurydtms

http://www.calebfassett.com/mercurydtms


Mercury Craters

 Measured d/D of 117 craters with MLA & 87 with MDIS stereo.
 Limited analysis to the smooth plains to provide consistent comparison 

to lunar maria data.

 Limited to craters 2.5 to 5 km because of resolution.



Mercury landforms degrade faster

 Diffusivity (Kappa) required to reach observed d/D is much 
higher on Mercury than the Moon.  
 κt for Mercury craters was calculated as the value required to match the 

observed d/D.  Plot below assumes that Mercury plains are ~3.7 Ga.  

 Effective kappa is for craters in 2.5 to 5 km size range.  Recall diffusivity is size-
dependent and faster at larger sizes.



Mercury landforms degrade faster

 Crater degradation consistent 
with:

 Faster destruction of crater 
rays (Braden et al., 2013).

 Faster growth of regolith 
(Kreslavsky et al., 2014).

 Likely underlying cause for all of these phenomena is the 
much higher impact velocities at Mercury.

 Implications for understanding broader geology?

Kreslavsky and Head, 2015



Conclusions

 We are converging on a model for how the topography of airless 
bodies evolves, including process and rate.

 This understanding provides a framework for constraining the age 
of individual craters, features, and surfaces.

 Landform evolution was much faster on Mercury than the Moon. 
This may have important consequences for understanding early 
Mercury history.


