

Modelling and Simulating Airport Surface Operations with Gate Conflicts

Shannon Zelinski Robert Windhorst

NASA Ames Research Center

Royal Aeronautical Society and AIAA Flight Simulations Conference, London 13-14 November 2017

SOSS is:

- A fast-time simulation environment for surface operations
- Used to develop and test surface scheduling concepts
- Currently testing a surface scheduling concept for Charlotte Douglas International (CLT)

CLT Surface Operations Challenges

Complex runway constraints

CLT Surface Operations Challenges

Complex runway constraints

Limited space for taxiing

CLT Surface Operations Challenges

Complex runway constraints

Limited space for taxiing

Heavy use of limited gates

Gate Conflicts

Flights need the same gate at the same time:

- Arrival is early
 - Departure is late or held for metering

Common in hub operations arrival/departure banks

Resolution option: Temporary parking in hardstands

- Describe SOSS and new functionality to model hardstand operations
- Compare gate conflict management approaches' impact on surface scheduling operations

- SOSS
- Gate Conflict Management
- Experiment Setup
- Results

SOSS Airport Model

SOSS Airport Model

SOSS Airport Model

Flight Taxi Movement and Routing

Scheduler Interface

- SOSS
- Gate Conflict Management
 - Prediction
 - Resolution options
 - Management approaches
- Experiment Setup
- Results

Gate Conflict Prediction

Gate Conflict Prediction

Gate Conflict Resolution

Gate Conflict Resolution

Gate Conflict Resolution

Gate Conflict Prediction

	Resolutions Allowed				
Management Approach	Departure Early Release	Departure To Hardstand	Arrival To Hardstand		
No Hardstand	\checkmark				
Departure Hardstand	\checkmark	\checkmark			
Arrival Hardstand			\checkmark		
Dual Hardstand	\checkmark	\checkmark	\checkmark		

- SOSS
- Gate Conflict Management
- Experiment Setup
- Results

Experiment Setup

- SOSS
- Gate Conflict Management
- Experiment Setup
- Results
 - Resolution types
 - Gate time separation
 - Runway time predictability
 - Surface transit time

Results: Resolution Types

separati	on violation	exces	s separatior	1		
•		Arrival	and Depar	ture To Hards	tand	
Dual Hardstand	>	***	××		×	×
Arrival Hardstand	Arr		ardstand	>	× ×	
Departure Hardstand		××	Departur X	e To Hardstan	d X	arly Poloaco
No Hardstand		××	×	×	X	
-5	-4 -3 -2 -1 (0 1 2 3	3 4 5 6	7 8 9 10 11	12 13 14 15 1	L6 17 18 19 20
		a	actual gate s	separation - β		

separati	on violation	exces	s separa	tion			
		Arrival	and Dep	oarture 7	Fo Hardsta r	nd	
Dual Hardstand	>	8.	×>	<		×	×
Arrival Hardstand	Arr	ival To H	ardstan	d X	×	×	
Departure Hardstand No	None	Arriva des	Depart Il resoluti ired gate	ions ach time se	lardstand ieve more paration	Arture E	arly Release
Hardstand							
-5	-4 -3 -2 -1 (0 1 2 3	8 4 5	678	9 10 11 12	13 14 15 1	6 17 18 19 20
		a	ictual gat	te separa	ation - β		

Runway Time Prediction Error at Ready Time

Runway Time Prediction Error at Ready Time

Runway Time Prediction Error at Ready Time

Gate Time Separation	Arrival resolutions are best at achieving desired gate time separation
Runway Time Predictability	Arrival resolutions have least impact on runway time predictability
Surface Transit Time	Arrival resolutions greatly impact arrival surface transit times

- Arrival Hardstand approach is sufficient for simulations of tactical surface metering
- *Dual Hardstand* approach may be needed for simulations with large departure delays due to Traffic Management Initiatives

- Explore use of *Dual Hardstand* approach in simulations with Traffic Management Initiatives
- Enhance SOSS to allow flights to be rerouted at any time

Shannon.j.zelinski@nasa.gov