Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

Manil Maskey and Rahul Ramachandran NASA/MSFC

J.J. Miller University of Alabama in Huntsville

- A subfield of machine learning
- Algorithms inspired by function of the brain (ANN)
- Scales with amount of DATA (training)
- Powerful tool without the need for feature engineering
- Suitable for Earth Science applications

- Facebook
 - Translates about 2 billion user posts per day in more than 40 languages
 - Photo search and photo organization
- Microsoft
 - Speech-recognition products: Bing voice search, X-Box voice commands
 - Search rankings, photo search, translation systems
- Google
 - Almost all services
- Medical Science
 - Diagnosis Language translation
- Playing strategy games
- Self driving cars

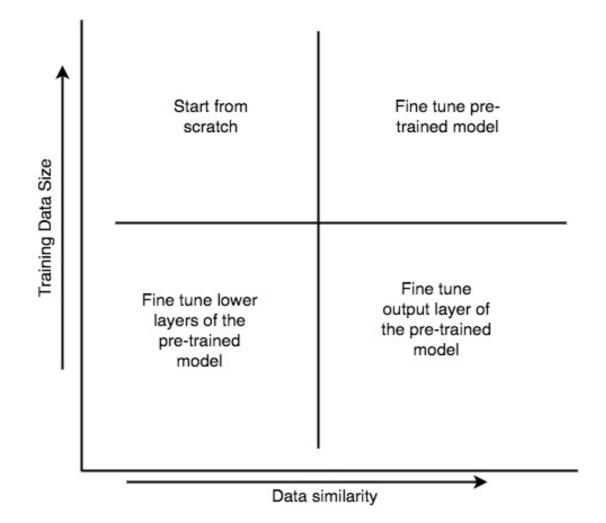
- One thing in common
 - Large number of data points needed to learn large number of parameters in the model that machines have to learn
- Barrier for using deep learning
- Data Training Data is the New Oil
- Manually creating labeled training data is bottleneck

	VGGNET	DeepVideo	GNMT	
Task	Classify image	Classify video	Translate	
Input Data	Image	Video	English Text	
Output	1000 Classes	47 Classes	French Text	
# of Parameters	~140 million	~100 million	~380 million	
Labeled Data Size	1.2 million images	1.1 million videos	6 million sentence pairs 340 million words	

- Hurricane intensity (wind speed) estimation
- Severe storm (hailstorm) detection .. Forecast?
- Transverse bands detection
- Dust climatology
- Phenomena identification
- Ephemeral water detection

Application	Training Data Size ~	Methodology	
Hurricane intensity (wind speed) estimation	49,000	Combining imagery with storm database	
Severe storm (hailstorm) detection	93,000	Storm reports	
Transverse bands detection	9,000	Manual	
Dust climatology	8,000	Manual	
Ephemeral water detection	650,000	Combining shapefiles and time series analysis	

- Data Augmentation
- Transfer Learning
- Permutation Invariance
- Data Programming



- For computer vision tasks
- Mirroring
- Random cropping
- Color shifting
- PCA

- Network gains knowledge from training data
- Compiled as "weights" of the network
- Weights can be extracted and then transferred to another network
- Instead of training network from scratch, "transfer" the learned features
- Pre-trained model
 - Created by someone else to solve similar problem
- Ways to fine tune the model
 - Feature extraction
 - Architecture
 - Train some freeze some

PERMUTATION INVARIANCE

•Example:

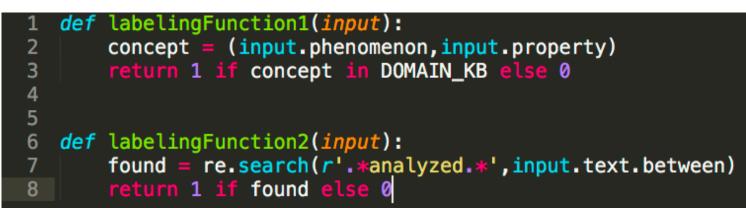
$$f(x_1, x_2, x_3) = f(x_2, x_1, x_3) = f(x_3, x_1, x_2) = \dots$$

Represent data that does not have spatial

relationship

- Programmatic creation of training dataset
- •User
 - Provides unlabeled data
 - Writes labeling functions (LFs) weak supervision
 oexpresses supervision strategies
 Chooses a discriminative model

- Domain rules/heuristics
- Existing ground-truth data that is not exact fit (distant supervision)
- •Weak classifiers ("boosting")
- Non-expert annotations ("crowdsourcing")



- Information Extraction from Earth Science Literature
- Unstructured text
- Extract information: dataset usage, hypothesis validation, etc.
- No large labeled training dataset
- Various ontologies, vocabularies, and glossaries?
- Custom heuristics?
- Regular expressions
- Rule-of-thumb
- Negative label generation

Sample text:

"Meteorological conditions during dust storms were analyzed using aerosol."

Sample Labeling Functions to extract mentions of dust events and physical properties

- labelingFunction1: Leverage existing Earth Science knowledgebase (e.g., SWEET)
- labelingFunction2: Domain heuristics

- Data programming framework
 - Training data creation and management
- Creates a noisy training set by applying LFs to data
- Learns a model of the noise (learns accuracy of LFs)
- Trains a noise-aware discriminative model

Application	Training Data Size ~	Methodology	Strategy
Hurricane intensity (wind speed) estimation	49,000	Combining imagery with storm database	Data Augmentation
Severe storm (hailstorm) detection	163,000	Storm reports	None
Transverse bands detection	9,000	Manual	Data Augmentation and Transfer Learning
Dust climatology	8,000	Manual	Data Augmentation and Transfer Learning
Ephemeral water detection	650,000	Combining shapefiles and timeseries analysis	None

- Should Earth science training dataset be published as traditional datasets?
- Catalog NASA CMR?

Available Public Datasets on AWS

Geospatial and Environmental Datasets

Learn more about working with geospatial data on AWS at Earth on AWS.

- Landsat on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Landsat 8 satellite.
- Sentinel-2 on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Sentinel-2 satellite.
- GOES on AWS: GOES provides continuous weather imagery and monitoring of meteorological and space environment data across North America.
- SpaceNet on AWS: A corpus of commercial satellite imagery and labeled training data to foster innovation in the development of computer vision algorithms.

- Deep learning is ideal for "supervised" learning
- Algorithms can be fine tuned for customized applications
- Large labeled datasets fuel impressive classification accuracy
- Challenge:
 - Creating/Identifying/Accumulating large labeled datasets
- Addressing Limited Labeled Data
 - Many approaches depends on application

Manil Maskey manil.maskey@nasa.gov