On the relationships between sprite production and convective evolution

Timothy Lang NASA Marshall Space Flight Center, Huntsville, AL

Acknowledgments on Individual Slides

https://eol.jsc.nasa.gov/

Scientific Questions

- What are the meteorological and thunderstorm conditions that lead to the production of sprites in the upper atmosphere?
- Why do some storms produce dozens or hundreds of sprites, and some don't produce any?
- How can we take advantage of modern observing infrastructure to better understand sprite-parent thunderstorm evolution?

Classic Model for Positive Sprites from Mesoscale Convective System (MCS)

- Large, long-lived storm
- Powerful positive cloudto-ground (+CG) lightning in the stratiform region
- Large charge moment changes (CMCs) – 100s of C km
- Sprites begin during mature to weakening phases of MCS

Classic Convectively Initiated Stratiform Sprite-Parent +CG

- Initiate in convection
- Propagation to adjacent stratiform
- Downward-sloping positive charge layer

Height (km MSL)

Fall & Winter Storm Sprites

- Common in Mediterranean and Sea of Japan
- Inferred shallower, more compressed vertical charge distributions
- Parent storms (e.g., Cyprus Lows) are comparable in size to summertime MCS
- Sprite production follows classic pattern relative to storm evolution

Yair et al. (2015)

Anomalously charged storm with positive charge in mid-levels (e.g., -20 C)

- Sprites from convective +CGs
- Propagation to adjacent anvil

Negative Sprites

- Two common modes

 Powerful –CGs in convection
 Powerful –CGs in stratiform
- Highly impulsive CMC little continuing current contribution
- Hybrid IC-NCG lightning likely culprits, especially for convective sprite parents

Marginal Sprite Producers

- Storms that produce only one or just a few sprites are often associated with weak convection in the presence of nearby stratiform precipitation
- However, the sprite-parent flashes often are long-lived (> 1 s) and feature horizontally extensive in-cloud components (> 100 km)

https://github.com/nasa/MMM-Py

Putting it all together ...

- The power of combined observations, including total lightning
- Sprites occur during mature to weakening phases of long-lived storms

GLM Observations of a Sprite-Producing Storm

Note: GLM data are preliminary and not operational

NASA All-Sky Fireball Network

https://fireballs.ndc.nasa.gov/

• Check out AE23A-2469 (Garnung and Celestin) this afternoon for TLE research using the French all-sky network

Danielle Moser, NASA MSFC

Danielle Moser, NASA MSFC

• Triangulation of Sprite Location

#MadeWithPyART

• Radar, GLM, and NLDN

NLDN +CG

- 05:53:20.509 UTC
- +19.9 kA
- Within 50 km of sprite location

• Weak convection with nearby stratiform anvil

#MadeWithPyART

- GLM "Flash" Animation
 - 2017-08-13 05:53:20.065000 Event Group 31.6 Flash NLDN +CG 31.4 _atitude (degrees) 31.2 31.0 30.8 -110.1 -110.0 -109.9 -109.8 -109.7 -109.6 -109.5 -109.4 -109.3 Longitude (degrees)
- West to east propagation (i.e., toward stratiform)
- Big increase in area associated with +CG and sprite (~05:53:20.46 sec)
- GLM baseline algorithm splits activity into dozens of flashes

Thanks to Eric Bruning for Event Lat/Lon Correction

• GLM lightning intermittent around time and location of sprite

GLM events within 30 min and 50 km of sprite

Working toward the future of research on sprites and convective evolution

Current/Past TLE Missions

ISUAL (Imager of Sprites and Upper Atmospheric Lightning)

- On board FORMOSAT-2 satellite, launched 2004
- Sun-synchronous orbit
- Cameras/Photometers
- Views perpendicular to orbital plane

JEM-GLIMS (Global Lightning and Sprite Measurements on Japanese Experiment Module)

- Integrated on International Space Station (ISS) in 2012
- Cameras/Photometers
- Electromagnetic wave receivers
- Nadir observations of TLEs and parent lightning

Future TLE Missions

TARANIS (Tool for the Analysis of RAdiations from lightNIngs and Sprites)

- Polar-orbiting, sun-synchronous satellite
- Cameras/Photometers
- X-ray/Gamma-ray/HE electron detectors
- HF/LF antennas
- Magnetometer

ASIM (Atmosphere-Space Interactions Monitor)

- Integrate on International Space Station (ISS)
- Simultaneous observations of sprites and parent lightning
- MMIA (Modular Multispectral Imaging Array)
- MXGS (Modular X-ray and Gamma-ray Sensor)

CNES - Septembre 2007 /Illus D. Ducros

RELAMPAGO Field Campaign

- November-December 2018
- Enhanced radar/sounding network
- LEONA TLE observing network
- Lightning Mapping Array (s?)
- GOES-16 Support ABI + GLM

LEONA Network

Sao Sabbas Tavares (2013)

GHRC DAAC

Future Analysis Paradigm

Moving toward global combined statistical analysis of sprites and convective storms

<u>Data</u>

- TLE observations Spaceborne (TARANIS, ASIM, etc.), all-sky, and other dedicated camera networks
- Radar observations GPM/IMERG, national radar networks (e.g., NEXRAD)
- Visible/IR GOES-16/S ABI, Himawari, etc.
- Lightning Geostationary (GLM, MTG-LI, etc.), ISS-LIS, ground VLF/LF networks (GLD360, WWLLN, etc.), LMAs

<u>Methods</u>

- Ground observations can provide time series of extremely large number of cases, need effective automation
- LEO sats can provide snapshot views, build up climatological database using IMERG, ISS-LIS/GLM, VIS/IR imagers