

Re-organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data

Christopher Lynnes* NASA Goddard Space Flight Center

*NASA Civil Servant

Current Data Organization

AIRS.2017.10.29.L3.RetStd	IR001.v6.0.31.0.G17303161840.hdf
AIRS.2017.10.30.L3.RetStd	IR001.v6.0.31.0.G17304144754.hdf
AIRS.2017.10.31.L3.RetStd	IR001.v6.0.31.0.G17305141729.hdf
AIRS.2017.11.01.L3.RetStd	IR001.v6.0.31.0.G17306150758.hdf
AIRS.2017.11.02.L3.RetStd	IR001.v6.0.31.0.G17307140216.hdf
AIRS.2017.11.03.L3.RetStd	IR001.v6.0.31.0.G17310121421.hdf
AIRS.2017.11.04.L3.RetStd	IR001.v6.0.31.0.G17310142829.hdf
AIRS.2017.11.05.L3.RetStd	IR001.v6.0.31.0.G17311141745.hdf
AIRS.2017.11.06.L3.RetStd	IR001.v6.0.31.0.G17313131129.hdf
AIRS.2017.11.07.L3.RetStd	IR001.v6.0.31.0.G17313124354.hdf
AIRS.2017.11.08.L3.RetStd	IR001.v6.0.31.0.G17313144044.hdf
AIRS.2017.11.09.L3.RetStd	IR001.v6.0.31.0.G17317101251.hdf
AIRS.2017.11.10.L3.RetStd	IR001.v6.0.31.0.G17315162221.hdf

2017-10-30720:25:44 2017-10-31T18:56:04 2017-11-01T18:26:14 2017-11-02T19:11:25 2017-11-03T18:11:46 2017-11-06T17:17:47 2017-11-06T19:32:48 2017-11-07T19:32:58 2017-11-09T18:18:20 2017-11-09T17:48:19 2017-11-09T19:48:20 2017-11-13T15:19:09 2017-11-11T21:33:51

Current Data Organization

AIRS. 2017. 2017. 10. 31	2017-11-01T18:26:14
AIRS.2017. 0.31.0.G1730414 AIRS.2017. 2017.11.01.0.31.0.G1730514	2017-11-02T19:11:25
AIRS.2017. 0.31.0.G1730619 AIRS.2017. 2017.11.02. 0.31.0.G1730714	2017-11-03T18:11:46
AIRS.2017. AIRS.2017. .2017.11.03.	2017-11-06T17:17:47
AIRS.2017. AIRS.2017. AIRS.2017. 2017.11.04. .31.0.61731114 .31.0.61731313	2017-11-06T19:32:48
AIRS.2017. 2017.11.05 .31.0.G1731314	2017-11-07T19:32:58
AIRS.2017. .2017.11.06.	²² 2017-11-09T18:18:20

How does time slice organization affect analysis performance?

Data Set: North America Land Data Assimilation System

Temporal Resolution: Hourly

Spatial Resolution: 0.125 deg resolution (464 x 224)

Variable: Air Temperature @ 2m

Calculation: Average over time at each grid point

Hardware: MacBook Air

Software: *ncra* from netCDF Command Operators (nco)

How does time slice organization affect analysis performance?

Hmmm...what if we pre-aggregate? For 2 years of data... Original Thin-sliced data: 17544 files Aggregated into Yearly Files: 2 files

Data organization	Number of files	Elapsed time to process
1 Hour / File	17544	461 s
1 Year / File	2	66 s

Meanwhile, back at the ranch archive...

EOSDIS archive volumes are slated to grow quickly over the next several years

EOSDIS migration to the cloud brings several benefits

Large Volume Data Storage

All datasets stored in common Web Object Storage archive

Scalable Compute Provision based on need

Cost by use

Cloud Native Compute

Analytics

Cloud compute services enhance implementation

"Scalable Compute" comes with a catch...

Cloud-based Data Parallelism

Cloud-based Data Parallelism

A user journey through data analysis on the cloud

Processor	Data org.	No. of files	Storage Type	Elapsed time
MacBook	1 Hr / File	17544	Local SSD	461 s
t2.xlarge	1 Hr / File	17544	Local SSD	97 s
MacBook	1 Hr / File	2	Local SSD	66 s
t2.xlarge	1 Yr / File	2	Network	56 s
t2.xlarge	1 Yr / File	2	Local SSD	39 s
t2.xlarge multi-proc.	1 Yr / File	2	Local SSD	20 s
2 * t2.xlarge multi-proc.	1 Yr / File	2	Local SSD	11 s

t2.xlarge = 4 vCPU, 8 GB memory, \$0.1856/hr

SSD = Solid State Drive

Journey Cost in Time and Treasure

1.5 Days from a standing start*

*Thanks, Anaconda and nco!

Summary: How to run fast

- 1. Process on fast cloud CPUs
- 2. Reorganize the data (space-time tiles)
- 3. Get data onto fast storage
- 4. Use all the CPUs on the virtual machine
- 5. Use multiple virtual machines

Summary: How to run fast

- 1. Process on fast cloud CPUs
- 2. Reorganize the data (space-time tiles)
- 3. Get data onto fast storage
- 4. Use all the CPUs on the virtual machine
- 5. Use multiple virtual machines

Why not reorganize ALL the data in the cloud?

- 1. First Rule of Archive Club: Nobody modifies the original data in Archive Club.
- 2. But: a second copy of all the data costs a lot of money
- 3. Live data streams mean ever-changing tiles
- 4. Users may be confused by the quasi-duplication

Data Bursting

Manual Curation

- Burst Based on User Requests / Votes
- > Data Expeditions
- Automatic Curation
 - > Event-triggered
 - ➤ "Data finds Data"*

*Jeff Jonas, http://jeffjonas.typepad.com/jeff_jonas/2009/07/data-finds-data.html

Data Bursting Opportunities

- Multi-dataset suites for studying Earth systems
- Bespoke gridding / projection schemes
- Rapid assembly of data suites in response to events

Data Bursting Challenges

- Reproducibility:
 - freeze-dry suites and store in low-temperature storage?
- Provenance:
 - bind to or place inside data?
- Choosing:
 - lightweight proposal process?
 - base on data impact?

CPU	Central Processing Unit
EOSDIS	Earth Observing System Data and Information System
nco	netCDF Command Operators
netCDF	Network Common Data Form
SSD	Solid State Drive