Detection of Hall Storms In Radar Imagery using Deep Learning
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In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the
United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that
leverages radar imagery for automatic detection of hail storms. The technigue is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved
a precision of 0.848.
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! Future work includes:

o applying the ConvNet from this study to satellite imagery for
hail detection
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e Incorporating data from numerical weather prediction

: | (@)
; ﬁ~ aimmcomsmmmmmnze I RRERRRRERGE models for enhanced accuracy
| IENE L Ezmmmmomzzmmmzge [EOEBEEEFEEFEECE :
| Ay RN | PEEEEEENECEEEESEE A EESEENACEGEES | | T TS oo
Figure 1: A national composite of NEXRAD base reflectivity image with i = = = = : =============== E EEEEEEEEEEEEE | i
a cropped subset corresponding to a hail report. | 1 1T ¥ 5= =============E= E EEEEEEEEEEEE? i (b) i Refereﬂ ces
| dECEEE EEEEENNEEENNEEEE R A A | ' 1. Maraban et al. (2001), “A Bayesian Neural Network for Severe-Hail
| | BT T LT T 1 J————— r | | Size Prediction,” Weather and I_:orecasti_ng, 16, 600-610.
Ground Truth Labels Training \alidation Testing Total i .\i L m EEEEEEEEE EEEEEECEFEIEECEE 4(m) | E 2. Mroz et al. (2017), _“Hall—Detect’!on Algorithm for_ the GPM Core
: EuE EECEEEN N ;::::E:::::::ﬁl:\r | : Ol:_)servatory Satellite Sensors,” Journal of Applied Meteorology and
Hail 38,813 | 12,486 | 6,313 | 57,612 | . ::EE :§§:§§:§§ S EEEEEEEEEEEEEE e i (©) : Climatology, 56, 1939-1957.
No Hail 54580 | 14,199 | 7,030 | 75,809 |  EEIERRELEREENENE momcmmmmmcomans= [ | i
’ ’ ’ ’ | RRRECEEEfEGETEE DONOENCNEEESIEEGE . Contact: mkp0015@uah.edu
Total 98,393 26,685 13,343 | 133,421 | |  Figure 4: Features maps from each of the five convolutional layers show Figure 5: Example test images classified from our trained ConvNet. |  This work was supported in part by
| features the ConvNet is learning. Activated neurons in early layers appear (a) test hail images correctly classified as hail, (b) test hail images | (D;rSOISpgD:tfoﬁ:beonr:;(?r?gel?vt/cggattrlfes m
Table 1: The sizes of the image subsets for training, validation, and ,  more dispersed, and become more compact in later layers. From Figure 4 Incorrectly classified as no hail, and (c) test no hail images | University of Alabama in Huntsville FHE UNIVERSITY OF
' ’ ’ : (a, c, d, e, g, m, and n), the network is learning the hail core, or cluster of Incorrectly classified as hail. The trained ConvNet relies upon the . and NASA Marshall Space Flight ALABAMA IN HUNTSVILLE

testing.

higher reflectivities associated with halil. presence of higher reflectivities (>60dBZ) to classify images. Center.
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