

Polarization deconvolution and geophysical retrieval from a dual-pol, cross-track scanning microwave radiometer (AMPR) during OLYMPEX/RADEX

Sayak Biswas¹

Timothy Lang²

David Duncan³

Christian Kummerow³

¹Universities Space Research Association ²NASA Marshall Space Flight Center ³Colorado State University

Outline

- Advance Microwave Precipitation Radiometer (AMPR) Instrument
- Polarization Mixing & Deconvolution
- Biases & Correction
- Retrieval
- Results

AMPR Instrument

- 10.7GHz **Channel Center Frequency** 85.5GHz 37.1GHz 19.35GHz Polarization A/B A/B A/B A/B Pre Detection Bandwidth (MHz) 1400 900 240 100 Integration Time (ms) 50 50 50 50 SSM/I SSM/I SSM/I **GTRI** Horn Type 9.7 Lens Diameter (inches) 5.3 5.3 5.3 1.8 4.2 Beam width (degrees) 8.0 8.0 Footprint (km) [@20 km ER-2 alt. 0.64 2.78 1.48 2.78 500kts]
- Cross-track scanning microwave radiometer
- Feed horn polarization basis (A/B) rotates with respect to the scene polarization basis (V/H) as a function of scan angle.

Geometry of Polarization Basis Rotation

$$\begin{bmatrix} T_{F,B} \\ T_{F,A} \\ T_{F,U} \\ T_{F,V} \end{bmatrix} = \begin{bmatrix} \cos^2 \alpha & \sin^2 \alpha & \frac{1}{2} \sin 2\alpha & 0 \\ \sin^2 \alpha & \cos^2 \alpha & -\frac{1}{2} \sin 2\alpha & 0 \\ -\sin 2\alpha & \sin 2\alpha & \cos 2\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} T_{E,v} \\ T_{E,h} \\ T_{E,U} \\ T_{E,V} \end{bmatrix}$$

$$\alpha = \tan^{-1} \left[\frac{\{\cos 2\theta \sin \psi + 2\sin^2 \theta \sin \phi \sin(\phi - \psi)\}}{\{\cos 2\theta \sin \psi + 2\sin^2 \theta \sin \phi \cos(\phi - \psi)\}} \right]$$

In AMPR,
$$\theta = 45^{\circ}$$
.
Therefore, $\alpha = \phi - \psi$

Since, the modified 3^{rd} (T_U) and 4^{th} (T_V) stokes brightness temperatures are not measured, the simplified transform is:

$$\begin{bmatrix} T_{F,B} \\ T_{F,A} \end{bmatrix} = \begin{bmatrix} \cos^2\alpha & \sin^2\alpha \\ \sin^2\alpha & \cos^2\alpha \end{bmatrix} \begin{bmatrix} T_{E,\nu} \\ T_{E,h} \end{bmatrix}$$
 Where,
$$\alpha = \phi - 45^0$$

Geometry of Polarization Basis Rotation

Observed Bias in recovered V & H –pol Brightness Temperature (Tb)

 The relationship between Tb measured in instrument polarization basis (A,B) and the scene polarization basis (V,H) is given by,

$$\begin{bmatrix} T_V \\ T_H \end{bmatrix} = \begin{bmatrix} \sin^2(45 - \phi) & \cos^2(45 - \phi) \\ \cos^2(45 - \phi) & \sin^2(45 - \phi) \end{bmatrix} \begin{bmatrix} T_A \\ T_B \end{bmatrix}$$
(1)

- Equation (1) is used to created observed V,H –pol Tb data from AMPR measurements.
- Tb Bias = Tb (Observed) Tb (Simulated)
- GDAS profiles and SST information was used to simulate V,H pol TB for several OLYMPEX flights with data over ocean.

Bias sources

The Tb bias for any AMPR polarization channel (A or B) is defined as,

$$\Delta Tb = Tb^{OBSERVED} - Tb^{SIMULATED}$$

where,

$$Tb^{SIMULATED} = (1-η)*[A(θ, ψ, φ)*Tb^{V} + B(θ, ψ, φ)*Tb^{H}] + η*[B(θ, ψ, φ)*Tb^{V} + A(θ, ψ, φ)*Tb^{H}]$$
(2)

 η = cross polarization fraction

A,B = polarization mixing weights (function of geometry)

 θ, ψ, φ = reflector normal angle, polarization alignment angle, sensor scan angle

 Any deviation of the following parameters from the nominal values will result in a bias:

η, θ,ψ,φ

A simulator is developed to analyze the bias sensitivity to any of the above parameters

V –pol Bias Due to Angle Error

V & H -pol Tb Bias

V & H –pol Tb Bias – AFTER CORRECTION

Multi-Linear Regression Model(s)

Model for Columnar Water Vapor (V in mm):

$$V\left(mm\right) = a_{0} + a_{1} * T_{B10v} + a_{2} * T_{B10h} + a_{3} * \ln(290 - T_{B19v}) + a_{4} * \ln(290 - T_{B19h}) + a_{5} * \ln(290 - T_{B37v}) + a_{6} * \ln(290 - T_{B37h}) + a_{1} * \ln(290 - T_{B37v}) + a_{2} * \ln(290 - T_{B37v}) + a_{3} * \ln(290 - T_{B37h}) + a_{4} * \ln(290 - T_{B37v}) + a_{5} * \ln(290 - T_{B37v}) + a_{6} * \ln(290 - T_{B37h}) + a_{1} * \ln(290 - T_{B37v}) + a_{2} * \ln(290 - T_{B37v}) + a_{3} * \ln(290 - T_{B37v}) + a_{4} * \ln(290 - T_{B37v}) + a_{5} * \ln(290 - T_{B37v}) + a_{6} * \ln(290 - T_{B37v}) +$$

Model for Columnar Cloud Liquid Water (L in mm):

$$L (mm) = a_0 + a_1 * ln(290 - T_{B19v}) + a_2 * ln(290 - T_{B19h}) + a_3 * ln(295 - T_{B85v}) + a_4 * ln(295 - T_{B85h})$$

Model for Surface Wind Speed (WS in m/s):

$$WS \ (m/s) \ = a_0 + a_1 * T_{B10v} + a_2 * T_{B10h} + \ a_3 * ln(290 - T_{B19v}) + a_4 * ln(290 - T_{B19h}) + a_5 * T_{B10v}^2 + a_6 * T_{B10h}^2 + a_7 * T_{B10v} * T_{B10h} + a_8 * SST$$

Where, $T_{Bnv,h}$ = Measured T_B for n GHz v,h-polarization channels

SST = Sea Surface Temperature in kelvin (a priori value needed)

a_n coefficients are polynomial functions of the incidence angle*

The WS retrieval is further improved by generating 'a' coefficients for different range of wind speeds, e.g. WS<=3, 3 < WS<=12 & WS>12 .

(*AMPR is a cross-track scanner and the observation incidence angle varies between 0° to 45°)

Coefficient Derivation & Testing

Performance and cross Talk Statistics

Retrieval and Cross-Talk Error

Errors are averaged over all EIA between 0 to 50 deg

CSU 1DVAR

- Optimal estimation retrieval for microwave imagers over ocean
- Simultaneously solve for wind speed, SST, liquid water path, and water vapor profile
- CRTM with FASTEM6 in forward model
- Water vapor profile decomposed into principal components
- Novel observation error covariance matrix accounts for co-varying forward model errors
- Applicable to any imager platform due to physical forward model
- See Duncan and Kummerow
 (2016) for additional details

11/24/15 2000-2038 UTC

Comparison between CSU 1DVAR Algorithm and MSFC/USRA Algorithm for 11/24/2015

- CLW good agreement overall
- WV and WS impacted by artifacts resulting from MSFC algorithm
- MSFC retrieves even in possibly raining scenarios
- CSU masks potential precip-impacted regions, but sometimes mask fails leading to highly erroneous retrievals

MSFC vs. CSU Algorithms

Five different case days

11/23, 24 12/10, 12, 13

12/13, 1916-1947 UTC

Small-scale variability in WS suggests post-frontal convection influencing surface winds

Wind speed masked for CLW $> 0.01 \text{ kg m}^{-2}$

Conclusions

- Significant improvements have been made to AMPR brightness temperature measurements, enabling deconvolution to V and H polarizations and the retrieval of physically realistic values for CLW, WV, and WS.
- Some artifacts still remain, due to instrument uncertainties as well as algorithm limitations – Improvement efforts continue
- MSFC algorithm capable of detecting apparent small-scale variability in convectively driven winds outside post-frontal cells on 12/13

Ackknowledgement:

BACKUP

WS regression coefficients

Two step retrieval:

- 1. "all WS" coefficients are used for the first retrieval.
- 2. Depending on the retrieved WS value of "all WS" algorithm, corresponding set of coefficients are chosen for a second and final retrieval.

Performance Comparison of Two step WS algorithm and One step algorithm

0.1

Integrated Cloud Liq. Water, L (mm)

0.3

30

Sea Surface Temp., SST (deg C)

'red' solid line is the mean error (averaged over all incidence angles). Dashed line show the +/- one std. deviation of the error about the mean value Two step algorithm performs better as expected.

Integrated Water Vapor, V (mm)

10

Wind Speed, WS (m/s)

15

20

12/13 dropsonde comparison

Dropsondes > 1 h from AMPR; however, closest one (red star) within 1.2 m s⁻¹

