Evaluating Precipitation Observed in Complex Terrain During GPM Field Campaigns with the SIMBA Data-fusion Tool

Stephanie M. Wingo
NASA Postdoctoral Program/USRA
Stephanie.M.Wingo@nasa.gov

Walt Petersen¹, Patrick Gatlin¹, David Marks², David Wolff³, and Charanjit Pabla²

¹NASA MSFC, ²SSAI/NASA WFF, ³NASA WFF

And Colleagues:
Jason Pippitt⁴, Ali Tokay⁵, Pierre Kirstetter⁶, Jianxin Wang⁴, V. Chandrasekar⁷, Shashank Joshi⁷

⁴SSAI/GSFC, ⁵UMBC/GSFC, ⁶OU/NSSL, ⁷CSU

American Geophysical Union • 2017 Fall Meeting • New Orleans • H32C-05
System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA)

- GPM GV & field campaign datasets
- Surface-, ground-, satellite-based instruments → points, profiles, volumes of data

SIMBA:
- Available observations from all supported platforms on a single, 3D grid
- Platform-specific modules
- Interpolate only as required for grid
- NetCDF, Atmospheric Column files
- Attributes maintain sensor parameters
SIMBA Overview

User Defines Column Grid:
- center location, horiz. & vert. extent, spacing

Platform-specific Modules:
- Read native data, process only as needed to set coincident observations into column grid

Atmospheric Column Data Product:
- All available observations on common 3D grid in NetCDF format

Ground-based Scanning Radars
- NPOL, D3R, DOW6, NWS NEXRAD/88D: Doppler, polarimetric radar fields, GPM-GV DPQC
- Gridded via Radx

Satellite-based Sensors
- GPM GMI: L1C, L2AGPROF T_Bs & retrieved precip
- GPM DPR: 2ADPR Ka/Ku-band obs & retrievals
- FOV locations

Ground, Point Observations
- Disdrometers, tip bucket & weighing gauges and derived parameters
- Exact locations preserved

Soundings:
- T, T_d, winds, LCL, LFC, EL, CAPE, CIN, TPW

MRMS QPE Product
- 0.01° x 0.01° over CONUS: Precip rate, precip type, RQI

Atmospheric Column Data Product
- Coincident data set into the requested column grid
- Attributes maintain: column grid set up, exact/original platform locations, modes, timestamps, algorithms, product versions, etc
- Inventory utility

Ground-based Profiling Radars
- MRR: Z, w, LWC, DSD parameters
- Vertical gate spacing

Ground, Point Observations
- Disdrometers, tip bucket & weighing gauges and derived parameters
- Exact locations preserved

Soundings:
- T, T_d, winds, LCL, LFC, EL, CAPE, CIN, TPW

MRMS QPE Product
- 0.01° x 0.01° over CONUS: Precip rate, precip type, RQI

Ground-based Scanning Radars
- NPOL, D3R, DOW6, NWS NEXRAD/88D: Doppler, polarimetric radar fields, GPM-GV DPQC
- Gridded via Radx

Satellite-based Sensors
- GPM GMI: L1C, L2AGPROF T_Bs & retrieved precip
- GPM DPR: 2ADPR Ka/Ku-band obs & retrievals
- FOV locations

Ground, Point Observations
- Disdrometers, tip bucket & weighing gauges and derived parameters
- Exact locations preserved

Soundings:
- T, T_d, winds, LCL, LFC, EL, CAPE, CIN, TPW

MRMS QPE Product
- 0.01° x 0.01° over CONUS: Precip rate, precip type, RQI

SIMBA enables more efficient precipitation science
by fusing targeted GPM GV observations from several instruments to a common atmospheric column grid

AGU 2017 Fall Meeting • H32C-05 • stephanie.m.wingo@nasa.gov
OLYMPEX Campaign: Winter 2015-2016

- Coast & terrain impacts on precipitation in Pacific frontal systems
- Effects on satellite measurements
- Remote and In-situ data collection
 - Ground-based:
 - NPOL, D3R, DOW, 88Ds
 - Disdrometers, gauges, particle imaging
 - Airborne sensors:
 - NASA DC-8, ER-2: dropsondes, GPM Core analog
 - UND Citation: In-situ cloud particle probes
 - Satellite: 2nd post-launch campaign for GPM Core Observatory

Houze et al. (2017)
OLYMPEX – 3 December 2015

- Evolving system with shortwave trough
- Southerly flow
- Early: Widespread stratiform, variability
- GPM Core OP @ 1523
- Ideal coordination
- Later: front-like shallow echo line with wind shift

UW WRF+GFS Analyses: 10 m winds & SLP

NPOL 1.5° Z

SIMBA Columns
6 locations
Ocean – Quinault River Valley
Along NPOL 50°/230° azimuth/DPR scan line

DPR & GMI swaths
Near perfect ground- & space-based scan alignment

NPOL RHI
DPR NS
DPR HS
DPR MS

1537
6 Columns along NPOL 50°/230°:

1) Ocean
 • Elev: 0 m
 • KLGX, NPOL, D3R

2) NPOL
 • Elev: 157 m
 • KLGX, NPOL, D3R
 • APU, tip gauges

3) Midpoint (N-AP)
 • Elev: 40 m
 • KLGX, NPOL, D3R, 1 MRR
 • APU, 2DVD, tipping bucket gauges

4) Amanda Park
 • Elev: 63 m
 • KLGX, NPOL, D3R, DOW6, 2 MRRs
 • APU, 2DVDs, Pluvio, tipping bucket gauges

5) Grave’s Creek
 • Elev: 358 m
 • KLGX, NPOL, DOW6
 • APU

6) Upper East Fork
 • Elev: 1120 m
 • KLGX, NPOL, DOW6
 • Pluvio gauge

Max time offset:
10 min (NPOL v. GMI)

RHIs Reveal Structure:
• Fallstreaks below brightband
• Upward VR shift over terrain; enhancement in Z, Z_{dr}, K_{dp} (e.g., Kingsmill et al. 2006, Medina et al. 2007, Kennedy and Rutledge 2011)
• Transient vertical Z_{dr} feature, max K_{dp} at base – but near 0°C (Tromel et al. 2013)
• DPR misses D_M behavior below 0°C level: Decrease then grow; only decreases in higher terrain – SW flow...

• Precip rates: at modest elevation sites, GPROF & DPR PRs vs. sfc-based data w/in ~3 mm/h

• Higher Terrain: More variability; DPR limited - at worst no gates below 0°C level
OLYMPEX – 3 December 2015

DPR HS Lowest Clutter-Free Bin Height: ~3 km in highest terrain for this case

- DPR misses D_M behavior below 0°C level: Decrease then grow; only decreases in higher terrain – SW flow...
- Precip rates: at modest elevation sites, GPROF & DPR PRs vs. sfc-based data w/in ~3 mm/h
- Higher Terrain: More variability; DPR limited - at worst no gates below 0°C level
OLYMPEX – 12 November 2015

UW WRF+GFS Analyses: 10 m winds & SLP
- Atmospheric river event
- Domain in warm sector
- Southwesterly flow

- GPM GMI OP @ 2115
- Up to 60 mm/24 h in QRV
- Leeward rain shadow

NPOL RHIs:
- Secondary peaks ~2km above 0°C
- VR shifts upward ahead of terrain
- BB, 2nd peaks bend down toward terrain
- Downslope flow

DPR & GMI swaths

- GPM GMI OP @ 2115
- Up to 60 mm/24 h in QRV
- Leeward rain shadow

NPOL RHIs:
- Secondary peaks ~2km above 0°C
- VR shifts upward ahead of terrain
- BB, 2nd peaks bend down toward terrain
- Downslope flow
• GMI only for this case
• Lower elev. Disdrometer-derived Rayleigh Z compares well to S-band obs

• Marked D_M increase approaching ground, particularly from MRRs - flow more normal to terrain barrier

• Precipitation rates especially more challenging in higher terrain
OLYMPEX – 17 November 2015

- Atmospheric river event
- Westerly flow
- Prominent stratiform, some embedded cells
- 200 mm + /24 h in QRV (up to 60 mm leeward)
- GPM GMI OP @ 2001

 Later: FROPA with NCFR, into elongated sections as passed over land

NPOL RHIs:
- VR shifts upward ahead of terrain
- Secondary peaks
- BB bends less than seen in 12 Nov case
- Growth below 0°C
• Z profiles compare better at lower elevation sites
• Precip rates: satellite estimates underest. ground-based by 50%+ at higher elevation
• DPR shows \(D_M \) behavior more subtly than ground-based sensors
• \(D_M \) increases toward ground (westerly flow) – except at highest elevation sites
17 Nov 2015

As approach terrain:
- MRRs: D_M increase more prominent
- NPOL/HID: more riming, big drops

- Topographically enhanced riming/aggregation leads to DSD changes resulting in more efficient collision-coalescence and larger drops at surface
- Dependent on flow orientation relative to terrain

DPR HS Lowest Clutter-Free Bin Height: ~3+ km in highest terrain for this case

- DPR can not see the whole story!
- DPR scan along NPOL 50° azimuth
- NPOL RHI composite filled in below DPR
DPR HS Lowest Clutter-Free Bin Height: ~3+ km in highest terrain for this case

- DPR can not see the whole story!
- DPR scan along NPOL 50° azimuth
- NPOL RHI composite filled in below DPR
IPHEEx Campaign: Spring/Summer 2014

- Warm season orographic precipitation & complex terrain hydrologic processes
- Effects on satellite measurements, QPE
- Remote and In-situ data collection
 - Ground-based:
 - NPOL, D3R, 88Ds, NOXP
 - Disdrometers, gauges, particle imaging
 - Airborne sensors:
 - NASA ER-2: dropsondes, GPM Core analog
 - UND Citation: In-situ cloud particle probes
 - Satellite: 1st post-launch campaign for GPM Core Observatory

Barros et al. (2014), IPHEEx Sci Plan

IPHEEx GV focus domain (yellow) & river basins of interest
IPHEEx – 23 May 2014

- GPM “Check-out” period
- Early: MCS off Appalachians
- Approaching cold front
- GPM DPR OP @ 2316
- Convection with 1-2 in hail in NPOL coverage; ER-2 coordination
IPHEX – 23 May 2014

- GPM “Check-out” period
- Early: MCS off Appalachians
- Approaching cold front
- GPM DPR OP @ 2316
- Convection with 1-2 in hail in NPOL coverage; ER-2 coordination
IPHEX – 23 May 2014

- DPR NS captures Z increase below 0°C better than HS, MS
- Satellite preip rates underestimate ground-based sensors

- Except in strongest Z core, satellite sfc precip rates underestimate MRMS
- DPR D_M behavior below 0°C better than OLYMPEX – less terrain
Summary & Continuing Work

- SIMBA fuses targeted satellite- & ground-based observations to a user-specified 3D grid for more efficient precipitation investigations

OLYMPEX Cases:
- Demonstrate concerns with DPR in regions of complex terrain
- D_M behavior below 0°C implies processes changes, dependent on orientation of cross-barrier flow

IPHEX Example:
- DPR NS better represents Z in stronger convection
- Improved DPR D_M in regions of less complex terrain

- Z_{dr} signature, ML characteristics, DPR profiles/algorithms improvements
- Additional events, statistics
- Further SIMBA developments

Visualization for Integrated Satellite- Airborne- and Ground-based data Exploration (VISAGE):
NASA AIST effort to use SIMBA

IN41B-0031: Thursday 8a-12:20p
Poster Hall D-F

This work is supported by an appointment to the NASA Postdoctoral Program at Marshall Space Flight Center, administered by Universities Space Research Association through a contract with NASA.

AGU 2017 Fall Meeting • H32C-05 • stephanie.m.wingo@nasa.gov