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Abstract 

  The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at 

the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will 

autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility 

(HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to 

perform timing based actions such as pump usage timing and sequence step timing. The purpose 

of this project was to develop a timing module that could fulfill these requirements and be 

adaptable for expanded use in the future. The code was written in Gensym G2 software platform, 

the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. 

Currently, the module has two timing capabilities, a stopwatch function and a countdown 

function. Although the module has gone through some functionality testing, actual integration of 

the module into NPAS and the INSIGHT program is contingent on the module passing later 

checks. 
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Introduction 

 The High Pressure Gas Facility (HPGF) at the NASA John C. Stennis Space Center 

(SSC) provides high pressure air, helium, nitrogen, and hydrogen to facilities around the site. 

The success of all engine tests on site hinges directly on the uninterrupted delivery of these gases 

from the HPGF. Currently, many decisions and commands to the HPGF system are done 

manually, which can cause personnel to be forced to come in during off hours, weekends, and 

holidays. INSIGHT is a program under development by the Autonomous Systems Laboratory at 

Stennis Space Center that will be able to autonomously monitor and control the Nitrogen System 

at the HPGF, and utilizes the Nasa Platform for Autonomous Systems (NPAS) [1]. NPAS itself 

uses integrated system health management (ISHM)[2] concepts to operate. In order to more 

accurately determine system health, usage monitoring of pumps and valves is a necessity, as 

failures can cascade quickly; Wear or maintenance issues need to be addressed before they 

become an issue. In autonomous control, proper timing of the steps in a sequence is also crucial 

as there are events that must be finished before another action can begin. My project focused on 

the creation of a timing module to address these requirements.  
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Figure 1: The High Pressure Gas Facility (HPGF) at Stennis 

 

Figure 2: The INSIGHT program running in the HPGF 
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Overview of Jobs 

The following tasks are an overview of my responsibilities: 

 Create a timing module for the INSIGHT program 

o Desired functions of timing module were given at a conceptual level, actual 

implementation was open ended 

o Brainstorm potential ways for G2 to perform desired function, look in official 

documentation to see what G2 can actually do 

o Create code 

o Test code 

o Fix bugs and unintentional actions in code 

 Document all necessary items relating to the timer module 

o Place comments in the code, particularly where the function of a chunk of code is 

not immediately obvious 

o Create a user guide that could be used by someone who is unfamiliar with coding 

in G2. 

o Identify limitations of the code and come up with possible future improvements 
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A Quick Intro to G2 

Gensym G2 is a real-time expert system shell[3] with an object-oriented graphical 

development environment. It was developed in the 1980s by Gensym Corporation, a company 

based out of Burlington, Massachusetts. Intended for use in intelligent systems, it is currently 

used in environments such as factories, chemical plants, power systems, and satellites[4]. 

Applications in G2 are called knowledge bases (KB), and can be running, paused, or 

reset. When a KB is paused, all transient data is saved, and resuming the KB will continue the 

application where it left off, and any changes made during the paused time will be instantly 

updated, allowing for very quick code changes and almost nonexistent compiling time. Inside of 

KBs are workspaces, which are blank areas that items can be created, organized, and interacted 

with [5]. 

 

Figure 3: An example of a workspace in a KB 
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KBs can also be broken down in to smaller parts, called modules, with each containing a 

separate and distinct part of the KB. For example, a KB modeling how a car functions could 

have a module that has the functionality of an engine, or a module that has the functionality of an 

air conditioner. Individually, the modules are distinct, yet when combined, can form a larger 

application. 

In G2, all things are either an item or a value. In a general sense, items are data structures, 

and values go inside of those data structures. Objects are a type of item. In the INSIGHT 

program, real life objects are represented as software objects, which must be defined by class 

definitions. Class definitions determine some behavior of the object as well as its attributes. 

Attributes define properties of the class. For example, a valve object could have an attribute 

named “position” that represents the valve’s position, with possible values “open”, “partially-

open”, or “closed”. 

An item’s attributes can be viewed in its table, which is accessed by double clicking on 

the item. In addition to the attributes of an item, an item’s table also shows other properties of the 

item such as its name, any problems with it, and any users that have modified it. The tables for 

the items in the workspace from Figure 3 are shown on the next page. 
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Figure 4: An example of a class definition table (for a class called testing-object) 

 

Figure 5: An example of an object table (for a testing-object named TEST-1) 

A procedure is a sequence of operations that execute whenever the procedure is invoked. An 

object can also have methods, which are procedures that are specific to a particular object class. 

While most of G2 is graphical, procedures and methods are typed out just like in more common 

languages. 
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Developing the Timer Module 

 One part of the timing module that I needed to create was a state timer for usage timing. 

Factoring in the amount of time that pumps have been running or valves have been open is a 

significant benefit when it comes to assessing the health of a system and deciding what to do. 

Initially, I was to create a stopwatch, something that could count up, pause, and be reset. Later 

on, it became clear that what was really needed was a state timer, something that could track the 

attribute of another object (ex: a valve), and time how long that attribute has been a certain value 

(ex: “open” or “closed”). This would allow usage monitoring on pumps and valves inside the 

HPGF, improving the decision making capability of the INSIGHT system. 

 The stopwatch implementation that I ended up using was a method called “stopwatch-

run” that ran continuously in the background once the stopwatch object was started, and 

regularly updated the attributes of the stopwatch based on a set update interval.  

The biggest part of my job was to create desired functionality for the module, as well as 

fix any bugs or issues that came up during development. For example, one of the issues that I 

came across was when the stopwatch-run method was called twice for a single object, two 

identical methods would run. This caused extra processing power to be used, and slowed down 

the entire program. The way this was fixed was by creating a new attribute for the stopwatch 

class called timer-existing, which the stopwatch-run method checked for every time it began. If 

timer-existing was true, that instance of the method would stop running. If timer-existing was 

false, then that meant that no other instance of the method was running. The method would then 

change timer-existing to true and continue running. This way, only one instance of the 

stopwatch-run method could run at any time, even if multiple methods were started. 
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Functionality of the Timer Module - Stopwatch 

 From a user perspective, the stopwatch timer observes the values of an attribute of an 

object, and tracks how long that attribute has had a set of desired values. In order to use the 

stopwatch, an object must be identified that has an attribute that is to be tracked. The desired 

values of the attribute must also be identified. The object, tracked attribute, and desired values 

must then be inputted into a method and the method must be started. In the code below, the 

object named “test-1” has an attribute named “position”, with the desired value “open” and 

“partially-open”. 

 

Figure 6: Sample code that creates and starts the stopwatch 

Once the method is started, a stopwatch object will be created. As seen on the next page 

in Figure 5, the stopwatch has an attribute called “state”. This effectively acts as an on/off switch 

and must be changed to on before any counting will happen. The stopwatch will now track the 

amount of time that the position attribute has the values “open” or “partially open”. It will treat 

the time that the attribute is a desired value as an on-cycle, and the time that the attribute is not a 

desired value as an off-cycle (This terminology is due to the intended use of the stopwatch for 

usage timing). Current-count represents the amount of time that the attribute has been in an on-

cycle if it is currently in an on-cycle (current-count is 0 during an off-cycle). Counting shows 

whether or not the stopwatch is in an on or off cycle. Since the value of the attribute “position” 

of the object “TEST-1” is open (one of the desired values), the stopwatch is currently in an on-

cycle. The on-time represents the last complete cycle that was on (this does not include the 
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current cycle). The off-time represents the last complete off-cycle (in this case, it would be the 

previous cycle since it is currently an on-cycle).  

 

Figure 7: An example of a running stopwatch 
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There is also a history storage option for the stopwatch. As seen in the bottom right of 

Figure 7, there is an object named “POSITION-OF-TEST-1-STOPWATCH-1-HISTORY” 

which itself is an attribute of the stopwatch. This object stores the times when the stopwatch 

transitioned between different cycles. On-history stores the times that the stopwatch was in an 

on-cycle, and off-history stores the times that the stopwatch was in an off-cycle. If a cycle is 

currently running, then its stop-time will be 0.000, as seen in the second cycle in on-history. In 

addition, the history times can also be written to an excel file if desired. 
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Functionality of the Timer Module – Countdown 

In addition to the stopwatch functionality, a countdown functionality was also implemented. For 

sake of length, it will not be discussed in as much detail as the stopwatch timer was. Unlike the 

stopwatch timer, the countdown timer works just as the name suggests. It takes a set amount of 

time as an input, waits for that set amount of time, then performs an action. In the countdown’s 

current form, the action performed is simply a notification to the user, but can be replaced with 

any chunk of code in the future. 

 

Figure 8: An example of a countdown 

 The countdown timer also has pause, reset, stop, and override countdown features. The 

set-count attribute determines how long the countdown will wait. When the “state” attribute is 

off, the countdown will pause, resuming once “state” is on again. When the “reset” attribute is 
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on, the timer will restart the countdown. When the “stop” attribute is on, the countdown stops, 

and does not execute the action. If a new instance of a countdown-run method is started with the 

same countdown object, the new countdown time will override the existing one and the 

countdown will reset. 
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Documenting the Module 

  Since my time working on this timing module was limited, someone else would have to 

be able to use my work after I left. This meant that documentation was extremely important. One 

of the items of documentation I made was a few activity diagrams of the main timer running 

methods. The activity diagrams were just a matter of tracing how the methods modified the timer 

attributes and displaying them visually. 

 

Figure 9: The activity diagram for the stopwatch-run method 
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Conclusion 

Development of this application required a significant amount of brainstorming and 

critical thinking. The state timer can now be potentially used for usage timing and the countdown 

can be used for sequence step timing, meeting the initial requirements. Documentation for the 

code is also complete, with comments in the code, a user guide, and a list of future 

improvements. Once this code passes further tests and improvements, it can be integrated into 

the INSIGHT program, where it will provide more information in decision making and aid in 

autonomous control of the HPGF.  
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