

ASK-the-Expert: Active learning based knowledge discovery using the expert

Kamalika Das

Data Science Group

NASA Ames Research Center

ML Workshop, August 2017

Roadmap

- Problem description
- State-of-the-art
- Proposed framework
- Tool description
- Algorithms
- Performance analysis
- Summary

Problem

- Identify safety events in flight operational data
- Unsupervised anomaly detection
- SME review of anomalies

Unsupervised anomaly detection

- Lack of definition of 'safety' incident
- One-class SVM based anomaly detection

State of the art

Proposed approach

Active learning with rationales framework

Active learning framework

ASK-the-Expert tool: architecture

Annotator component

Coordinator component

Multiple kernel support vector machine

 Multiple kernel 2 class SVM: classifying between operationally significant (OS) and uninteresting (NOS) flights

- 2-class SVM objective: $\min_{\alpha} D(\alpha) = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \sum_i y_i \alpha_i \quad \text{s.t. } \begin{cases} \sum_i \alpha_i = 0 \\ 0 \le y_i \alpha_i \le C \end{cases}$
- Decision function: $f(x) = \sum_{i} \alpha_i K(x_i, x) + b$

Rationale feature construction

• How to set weights: $\eta_1, \eta_2, ..., \eta_n$

$$K_{\eta} = \sum_{m=1}^{P} \eta_{m} k_{m} (x_{i}^{m}, x_{j}^{m})$$
 s. t. $\eta_{m} >= 0 \& \sum \eta_{m} = 1$

- Simple MKL algorithm
 - Modified objective function
 - Alternates between optimizing classifier margin and weights of kernels

Rationale feature construction

Decision tree induction

NASA

Data

ORIGINAL FEATURES

- Latitude
- Longitude
- Altitude
- Ground speed
- Horizontal separation
- Vertical separation
- Aircraft size
- Turn-to-final (TTF) parameters:
 - Maximum overshoot
 - Speed at TTF
 - Distance at TTF
 - Angle at TTF
 - Altitude difference at TTF
- Nearest neighboring (NN) flight info:
 - NN flight on same runway
 - NN flight on parallel runway
 - NN flight part of the same flow

Runway

Rationale features

"Loss of separation"

Horizontal separation < 3 miles AND
 <p>Vertical separation < 1000 ft AND nearest
 neighboring flight is not on parallel runways
 and not part of the same flow</p>

"Large overshoot"

 Maximum overshoot is greater than a threshold based on values of flights with positive labels

"Unusual flight path"

 Overall deviation from expected (average) trajectory of all landing flights on that runway

Experimental setup

- Data set: 30 NM airspace around Denver International Airport for Aug 2014
 - Training set: ~2400 flights
 - Statistical anomalies: 153
 - OS flights: 24
- 2 fold cross validation with 10 random bootstraps for each fold

Performance analysis

- Metrics: precision@5 and precision@10
- Most-likely positive strategy $\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{U}}{\operatorname{arg max}} P_{\theta}(\hat{\mathbf{y}}^+ | \mathbf{x})$

Performance analysis

Learning curves for most likely positive strategy with and without rationales

Performance analysis

	Target precision@5						Target precision@10					
Method	0.5	0.6	0.7	0.8	0.9	1.0	0.50	0.55	0.60	0.65	0.70	0.75
RND	6	25	n/a	n/a	n/a	n/a	12	18	33	n/a	n/a	n/a
MKAD-Sampling	4	6	n/a	n/a	n/a	n/a	4	6	13	n/a	n/a	n/a
MLP	5	10	16	32	n/a	n/a	8	12	15	16	23	34
MLP_w/Rationales	2	2	2	8	10	29	2	5	7	11	19	29

Comparison of number of labeled flights required by various strategies to achieve a target performance measure. 'n/a' represents that the target performance cannot be achieved by a method even with 45 labeled flights.

Performance benefits

Generalization

- Two different test data sets: July 2014 and July 2015
- Average improvement in precision@5: ~30%
- Average improvement in precision @10: ~65%

Review time

Up to 75% reduction in review time for same target performance

Summary

- Goal: to reduce SME review time of statistical anomalies identified using unsupervised anomaly detection
- Use active learning with rationales to learn 2class classifier to distinguish between operationally significant and uninteresting anomalies
- Classifier generalizes to other data sets from the same domain
- Up to 75% reduction in SME review time

Acknowledgement

 This work is supported by Center Innovation Fund (CIF) 2017 award

• Team:

- Nikunj Oza, NASA Ames Research Center
- Bryan Matthews, SGT Inc.
- Illya Avrekh, SGT Inc.
- Manali Sharma, PhD Student, Illinois Institute of Technology
- Sayeri Lala, Undergraduate Student, Massachusetts Institute of Technology

Thank You