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ABSTRACT

Prognostic methods enable operators and maintainers to pre-
dict the future performance for critical systems. However,
these methods can be computationally expensive and may
need to be performed each time new information about the
system becomes available. In light of these computational
requirements, we have investigated the application of graph-
ics processing units (GPUs) as a computational platform for
real-time prognostics. Recent advances in GPU technology
have reduced cost and increased the computational capabil-
ity of these highly parallel processing units, making them
more attractive for the deployment of prognostic software.
We present a survey of model-based prognostic algorithms
with considerations for leveraging the parallel architecture of
the GPU and a case study of GPU-accelerated battery prog-
nostics with computational performance results.

1. INTRODUCTION

Prognostic methods are valuable to system operators and
maintenance personnel for the prediction of future perfor-
mance, remaining useful life (RUL), and the probability that
the system can successfully complete the intended work cy-
cle. However, the application of these methods requires the
input of information about the system, data processing, and
the repeated execution of computationally expensive prog-
nostics algorithms for the return of prognostic results. To
consider the uncertainty in the predictions, e.g., in future sys-
tem usage, many algorithms typically consider many poten-
tial system execution samples in order to compute the statis-
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tics of the RUL distribution. Such approaches do not scale
well in typical centralized computing architectures.

To satisfy these requirements, we have investigated the ap-
plication of graphics processing units (GPUs) as a compu-
tational platform for general and real-time prognostics. The
computations of the prediction algorithms are divided into a
set of several parallel computations, after which results are
aggregated. This paper presents our preliminary work in this
area, including considerations and constraints for the appli-
cation of GPUs for prognostic algorithms, and an example
of GPU-accelerated prognostics for battery end of discharge
(EOD) prediction.

Initial work involving GPUs for general purpose comput-
ing required the phrasing of computational problems in the
form of graphics language calculations (Owens et al., 2007).
As GPU technology advanced, Nvidia released the Compute
Unified Device Architecture (CUDA) which provided devel-
opers with an application programming interface to the com-
putational units of the GPU. With access to the full computa-
tional power of the GPU, software developers were able to in-
stantiate their code on hundreds of cores running thousands of
threads for massively parallel programming (Luebke, 2008).
Recently, GPUs have seen extensive use in the training of
neural networks, virtual reality and augmented reality, and
advanced image and data processing methods.

Although no written publication of the application of GPUs
towards model-based prognostics could be found, there are
many cases in which the utilization of GPUs has benefit-
ted computationally expensive model-based predictive algo-
rithms. Researchers from the National Center for Atmo-
spheric Research achieved an order of magnitude increase
in performance by using GPUs for a performance critical
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module of their predictive state-of-the-art non-hydrostatic
NWP weather research and forecast model (Michalakes &
Vachharajani, 2008). Similarly, researchers from the Cen-
tre for Wireless Network Design utilized GPUs in the cal-
culation of very precise radio coverage predictions based
on a very computationally intensive Finite-Difference Time-
Domain (FDTD) mode (Valcarce, De La Roche, & Zhang,
2008). The use of GPUs for computing uncertainty in com-
putational mechanics was studied by researchers from the
University of Minnesota, who presented 5 case studies fea-
turing GPU implementations common uncertainty quantifi-
cation techniques, in each case GPU accelerated computation
showed considerable advantages (Wojtkiewicz et al., 2011).

As a case study, this paper presents initial work in the imple-
mentation of model-based battery prognostics algorithms on
a GPU. Section II describes the computational performance
characteristics of GPUs and considerations for the implemen-
tation of algorithms on GPUs. Section III presents potential
advantages in the use of GPUs for real-time prognostic algo-
rithm processing. Section IV is a case study and initial results
from an implementation of model based battery prognostics
algorithm on a GPU. Conclusions and future work are de-
scribed in the final section.

2. CONSIDERATIONS FOR GPU USE

The massively parallel nature of the GPU and the accessi-
ble and well-documented CUDA API enables developers to
quickly and easily decide which portions of their code should
be processed by the CPU and which should be processed by
the GPU. However, not all code or algorithms receive a per-
formance boost when implemented on a GPU. Factors such
as memory access, direct human interaction, or a serial na-
ture can reduce the potential for GPU-based acceleration.

The single-instruction multiple-thread execution model em-
ployed by the GPU allows individual threads to operate si-
multaneously even on different data, which leads to improve-
ments in performance but requires that the instruction for
each thread or task on the processor be identical. Addition-
ally, the parallel processing of tasks on the GPU means that
threads should not be reliant on the results of other threads.
Finally, individual threads receive a unique index or thread
ID and block ID. This can be used to assign each thread a dif-
ferent part of the supplied data or to write results to an array
at the completion of the thread.

Additionally, the GPU processing flow should be followed to
supply the threads with data to process and available memory
to write the result. The GPU processing flow relies on the
allocation of memory on the GPU prior to execution of code
on the GPU. This means that GPU memory must be allocated
for both the data to be copied to the GPU and the resulting
data before processing can begin. After allocation, data can
be copied from the CPU memory to the GPU memory. Once
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Figure 1. Processing flow for data transfer between memory
on CPU and GPU

execution of the GPU code is complete, the data in the re-
sults array can be copied to the CPU memory from the GPU
memory. GPU memory can be freed once this is done. Fol-
lowing this processing flow requires knowledge of the data to
be copied and the result. Additionally, the overhead incurred
by the copying or repeated copying of data between the CPU
memory and the GPU memory can significantly reduce the
benefit of parallelization.

3. PROGNOSTIC ALGORITHM ACCELERATION WITH
THE USE OF GPUS

In this paper, we focus on the application of the model-
based prognostics paradigm (Orchard & Vachtsevanos, 2009;
Daigle & Goebel, 2013; Saha & Goebel, 2009), where prog-
nosis is performed using a combination of a state estima-
tion algorithm (often a Bayesian filter) and a prediction algo-
rithm, both of which rely on a model of the monitored system.
Prognostics approaches using machine learning can already
be readily applied to GPUs using available software such as
TensorFlow. Generally, within the model-based prognostics
architecture, we must first perform state estimation, then a
prediction up to a time horizon or until a threshold of interest
is reached. For each of these steps, we use the system model.
As new data is received, the process begins again.

For the state estimation part, the unscented Kalman fil-
ter (UKF) (Julier & Uhlmann, 2004) and the particle fil-
ter (PF) (Arulampalam, Maskell, Gordon, & Clapp, 2002;
Doucet, Godsill, & Andrieu, 2000) are commonly applied
within the context of prognostics. Both algorithms use a set
of samples in order to estimate the system state. Thus, the
computations that are performed on each sample individu-
ally can be readily parallelized. However, state estimation
occurs every time new data is obtained, and the computations
performed on each sample is minimal. Thus, state estima-
tion algorithms are generally not good candidates for GPU
implementation, since the overhead of copying memory to
and from the CPU and GPU overcomes any benefit achieved
by parallelization. In distributed prognostics approaches us-
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Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

. . .

CPU, 1 Core

Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

GPU, 1000 Threads
Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

Execute Sequentially Execute in Parallel

Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

Prediction
While t<horizon

u = inputEqn(t)
x = stateEqn(x,u)
If 

thresholdEqn(x,u)
Return t

Return inf

. . .

Figure 2. Sequentially executed prediction steps under the standard model-based prognostics architecture

ing multiple filters (Daigle, Bregon, & Roychoudhury, 2012,
2014), each filter could be potentially parallelized into its own
GPU thread, with results being aggregated on the CPU.

The prediction of the future state up to a certain time horizon
within the our model-based prognostics architecture relies the
commonly used Monte Carlo uncertainty propagation method
to compute independent realizations from randomly drawn
samples (Sankararaman, Daigle, & Goebel, 2014). For a sin-
gle realization of the system state at the time of prediction and
the future input trajectory, a single realization of the future
system trajectory is predicted along with the corresponding
RUL. Each of these realizations is produced by executing a
simulation of the system with the given inputs using the sys-
tem model. Each simulation can take a significant amount of
time, depending on the time horizon and the number of the
samples in the simulation. Increasing the number of samples
in the simulation produces a more accurate probability den-
sity function but also increases the computational overhead.
So, the prediction algorithm is a perfect candidate for par-
allelization on a GPU. Each simulation can be performed in
parallel, rather than sequentially as on a CPU.

4. CASE STUDY: GPU ACCELERATED BATTERY
PROGNOSTICS

For our initial investigation into GPU programming for prog-
nostics, we wanted to choose a prognostics algorithm which
could benefit from parallelization. Our most recent electro-
chemistry model-based battery end of discharge algorithm

(Daigle & Kulkarni, 2013) was chosen based on its complex-
ity and computational overhead. This algorithm, which also
employs the state estimation, then prediction steps discussed
above, simulates the discharge of a single 18650 lithium-ion
cell. The cell starts at a nominal voltage of 4.2 volts at 100%
state of charge, and through a constant discharge, we are able
to track a decrease in voltage over time.

A CPU-based implementation of the battery EOD algorithm,
as used within the General Software Architecture for Prog-
nostics was profiled to determine the runtime of the full al-
gorithm including an Unscented Kalman filter algorithm for
state estimation and a Monte Carlo algorithm for the predic-
tion step. Results from the profiling at 1000 samples with a
time horizon of 5,000 seconds, show that 99.93% of the run-
time for the algorithm sources from the prediction step of the
algorithm; hence, we focus on implementing the prediction
step of the algorithm on the GPU.

To demonstrate the performance improvement of the Monte
Carlo implementation on the GPU, two Monte Carlo esti-
mation of Pi programs were created, a CPU-based version
and a GPU accelerated version. Each program featured
268,435,456 samples and each program was compared us-
ing a laboratory workstation operating Ubuntu Linux with an
Intel i5-5600 (Quad Core 3.2Ghz) COU and Nvidia Quadro
K1200 GPU. The CPU version ran approximately 88 times
slower than its respective GPU implementation with the same
root-mean-square error of 0.11

Here, we focus only on the implementation of prediction step
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of the EOD algorithm on the GPU following the approach
outlined in the previous section. To produce an estimation of
the time until EOD, a Monte Carlo simulation of the battery
state is performed. With a time step of 1 second the battery
state is updated and checked against the low voltage thresh-
old until a time horizon of 5,000 seconds or the end of dis-
charge is reached. The implementation of this algorithm on
the GPU required the creation of a kernel with instruction
for the threads and state estimation and threshold checking
functions to be compiled for the GPU in support of the ker-
nel. Additionally, main code operating on the CPU was used
to allocate memory, measure kernel compilation time, syn-
chronize thread processing, and perform the final calculation
of the EOD using the results of each thread. This code was
developed in such a way that the number of samples in the
simulation could be manually increased or decreased before
the simulation.

Pseudo code of the device code (kernel) and the host code
(main CPU program) can be found in the following subsec-
tions.

4.1. Host Code

The host code operates on the CPU and is the main body of
the application. Within the host code, parameters for the sim-
ulation are defined, memory is allocated on the CPU mem-
ory and the GPU memory, and a GPU accelerated Mersenne
Twister pseudo random number generator is quickly imple-
mented to create random samples for the input of each Monte
Carlo realization. Within the host code the GPU kernel is
called specifying both the number of blocks to use and the
number of threads per block. Additionally, pointers to the
random number array and an empty results array are passed
to the kernel during the call. While the GPU executes the ker-
nel, each operation of the kernel operates on each thread of
each block specified. During this time the CPU is free to con-
tinue executing the host code. In this case, we synchronize
before continuing to ensure that all threads have completed
before processing their results.

For this case study, the future battery loads are assumed to
be constant, and these loads are sampled for the Monte Carlo
prediction. This could easily be extended to also sample also
the initial state at the time of prediction (i.e., from the distri-
bution computed by the estimation algorithms).

Once all the threads have run, a memory copy operation
makes the results available on the CPU memory. The host
code aggregates the results and calculates the probability of
end of discharge state.

# Host code, operates on CPU
int main(int argc, char* argv)

// Number of samples in the sim.
int threads = 100; int blocks = 100
int numSamples = blocks*threads;

// Allocation of memory for model input
// on the host and on the device
double *U_d;
cudaMalloc((void**)&U_d, numSamples *
sizeof(double));

// Allocation of memory for the EOL
// results array on the device
double *EOL_d;
cudaMalloc((void**)&EOL_d, numSamples *
sizeof(double));

// Allocate memory on CPU for results that
// will be copied from device
double *EOL = (double*)malloc(numSamples *
sizeof(double));

// Use CuRand to generate an array of
// random numbers on the device using
// GPU accelerated Mersenne Twister - PRNG
curandGenerator_t gen;
curandCreateGenerator(&gen,

CURAND_RNG_PSEUDO_MRG32K3A);
curandSetPseudoRandomGeneratorSeed(gen,

4294967296ULLˆtime(NULL));
curandGenerateUniformDouble(gen, U_d, numSamples);
curandDestroyGenerator(gen);

// Call the kernel function, specifying
// number of blocks and threads
kernel <<<blocks, threads>>> (U_d, EOL_d);

// Sychronize all threads, to make sure all
// results are in
cudaDeviceSynchronize();

// Copy results from GPU to CPU
cudaMemcpy(EOL, EOL_d, numSamples *
sizeof(double), cudaMemcpyDeviceToHost);

// Compute aggregate EOL results
// Go through all samples, compute average
// EOL and probability of EOL
double sumEOL = 0;
double numberOfEOL = 0;

// Go through all samples
for (int i=0; i<numSamples; i++) {
// If EOL was reached, add to
// the sum and count

if (EOL[i] >=0) {
//printf("EOL:
sumEOL += EOL[i];
numberOfEOL++;
}}

// Compute average EOL (of those that were reached)
double averageEOL = sumEOL/numberOfEOL;
// Compute probability of EOL
double probabilityOfEOL = numberOfEOL/numSamples;

// Clean up
cudaFree(U_d); cudaFree(EOL_d); free(EOL);
return 0;
}
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4.2. Device Code

The device code operates on the GPU in parallel. Once the
GPU kernel is called by the main program, this code is exe-
cuted in parallel by the threads within the blocks. The kernel
function operates on a single sample, i.e., it runs a single re-
alization of the future system evolution. In this case, it sim-
ulates up to a finite time horizon of 5,000 seconds. It saves
whether this particular thread hit end of discharge, and if so,
at what time.
__global__ void kernel()
{
// Set up index for each thread
// based on thread and block structure
int tid;
tid =blockDim.x*blockIdx.x + threadIdx.x;

// Set up parameters for the model
// Set up process noise if desired
// Set to initial state, 4.2 volts
// Get the model input
// Set default EOD value, 3 volts

// Simulate to a finite time horizon,
// with a sample time of 1
double tHorizon = 5000;
double dt = 1;

for (double t=0; t<=tHorizon; t+=dt) {
// Simulate the model one step ahead
stateEqn(param, t, x, u, Noise, dt);

// Check if EOD has occurred
bool atEOD = threshold(param, t, x, u);

if (atEOD) {
// Save EOD and exit kernel

EOD_d[tid] = t;
Return;}

}}

4.3. Baseline Results

To evaluate the performance benefits GPU implementation
of prognostics algorithms, we used the Monte Carlo-based
based battery end of discharge algorithm as described in
the previous section. This algorithm was implemented us-
ing CUDA, with the CuRAND library and Mersenne Twister
pseudo-random number generator, and executed on a Nvidia
Jetson TX1 development kit operating Ubuntu Linux 14.04.
These tests were compared with the same algorithm imple-
mented in standard C++, on an Intel i7 powered, Apple Mac
Book Pro without the assistance of a GPU. The following re-
sults are for multiple timed executions of the algorithm on
each system with an increasing number of samples in the
Monte Carlo simulation.

The GPU-based implementation provides a significant advan-
tage, and scales much better than the purely CPU-based im-
plementation. With a small number of samples, the overhead
in copying memory between the CPU/GPU dominates, and
the CPU-only approach is preferred. For larger numbers of
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Figure 3. Initial results comparing CPU vs CPU processing
time

N CPU Execution Time GPU Execution Time
1 0.005 0.313
10 0.11 0.365
100 1.001 0.349
1000 9.40 0.619
10K 91.194 3.709

Table 1. Baseline results of battery prognostics algorithm ex-
ecution time

samples (which is the case in practice), the GPU approach
provides an order of magnitude improvement.

5. CONCLUSIONS

In this paper, we described how GPUs can be used to acceler-
ate prognostics, specifically within the model-based prognos-
tics approach. We showed that prediction algorithms can be
easily parallelized and implemented on a GPU resulting in re-
duced execution time. The results demonstrate the improved
performance of GPU-based approaches and open the door for
increased accuracy through utilization of greater numbers of
samples. Future work will involve exploring how GPUs can
be used to improve prognostics-integrated decision-making
algorithms and how they may enable a prognostics as a ser-
vice paradigm.
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