SPACE LAUNCH SYSTEM

A TRANSFORMATIVE CAPABILITY FOR DEEP SPACE MISSIONS

Spacecraft/Payload Integration & Evolution

. 4 . . . 3 . . . 2 . . . 1 . . .

SLS CAPABILITY AVAILABILITY

	SLS Block 1 As Early As 2019	SLS Block 1B Crew As Early As 2022		SLS Block 1B Cargo As Early As 2022		SLS Block 2 As Early As 2028	
	<u>Provides</u>	Provides		<u>Provides</u>		<u>Provides</u>	
ļ	Initial Heavy-Lift Capability	105 t lift capability via Exploration Upper Stage		8.4-meter fairings for primary payloads		130 t lift capability via advanced boosters	
		Co-manifested payload capability in Universal Stage Adapter	•			10-meter fairings fo primary payloads	
	<u>Enables</u>	<u>Enables</u>		<u>Enables</u>		<u>Enables</u>	
	Orion Test	Deep Space Gateway		Europa Clipper/Lander		Crewed Mars Orbi Missions	ł
	Deep Space	Larger CubeSat- and ESPA-Class Payloads		Deep Space Transport		Crewed Mars Surface Missions	
				lce or Ocean Worlds Missions			
•				Large-Aperture Space Telescopes			
La' y					(B-8)		

ì

5

- Int

SLS

for

BOOSTER PROGRESS

CORE STAGE PROGRESS

ENGINE PROGRESS

IN-SPACE STAGE AND ADAPTER PROGRESS

SLS

PROGRESS TOWARD EM-2/BLOCK 1B

EM-2 Core Stage Welding

EUS Development Panel Forming

EM-2 Booster Insulation Installation

EM-2 Flight Engine Testing

Universal Stage Adapter Contract

0368.7

2020s

CREATING ECONOMIC OPPORTUNITIES, ADVANCING TECHNOLOGIES, AND ENABLING DISCOVERY

Leaving the Earth-Moon System and Reaching Mars Orbit

After 2030

Phase 0

Continue research and testing on ISS to solve exploration challenges. **Evaluate potential for** lunar resources. Develop standards.

Phase 1

Begin missions in cislunar space. Build Deep Space Gateway. Initiate assembly of **Deep Space Transport.** Phase 2

Complete Deep Space Transport and conduct yearlong Mars simulation mission.

Phases 3 and 4

Begin sustained crew expeditions to Martian system and surface of Mars.

A PHASED APPROACH TO HUMAN SPACEFLIGHT SLS PLAYS A KEY ROLE INTO THE 2030s

0368.8

Now

Using the International **Space Station**

SLS Spacecraft/Payload Integration & Evolution (SPIE)

ISPE Hardware Development & Payload Integration for SLS Missions

Notes: ISPE - Integrated Spacecraft Payload Element SPL - Secondary Payload MSA- MPCV Stage Adapter ICPS - Integrated Cryogenic Propulsion Stage LVSA - Launch Vehicle Stage Adapter EUS – Exploration Upper Stage USA – Universal Stage Adapter CPL – Co-manifested Payload PLA – Payload Adapter PLF - Payload Fairing PPL – Primary Payload SLS

ISPE Separation Plane

www.nasa.gov/sls

SLS TIME TO DESTINATION

 $C3=82 \text{ km}^2/\text{s}^2$

0 Earth Flybys Launch SLS

Earliest Launch

*Period: 6/4/22 - 6/24/22 (SLS) *Period: 6/18/22 - 7/8/22 (Atlas)

> 2.5 Years (SLS) 7.4 Years (Atlas)

Jupiter Orbit Insertion

12/24/24 or 5/1/25 (SLS) 11/26/29 (Atlas)

Jovian System Operations

Prime Europa Flyby Campaign: 36 months

RANGE OF PAYLOAD ENCAPSULATION

Block 2

NASA

Block 1B

SLS

COTS: Commercial Off-the-Shelf www.nasa.gov/sls

e-Shelf CPL: Co-manifested Payload PPL: Primary Payload PLF: Payload Fairing

0368.11

SLS MASS TO DESTINATION

New Horizons

Up to 5 times greater mass to orbit capability than current launch systems

- Increases payload mass margins
- Offers range of injection propulsion options

New Horizons

 SLS would have doubled delivered payload mass to Pluto

Europa Lander

- 16 mT delivery to outer planets (with margin)

ONE LAUNCH, MULTIPLE DISCIPLINES

Moon

- Lunar Flashlight (NASA)
- Lunar IceCube (Morehead State University)
- LunaH-Map
- (Arizona State University)
- OMOTENASHI (JAXA)

Asteroid

NEA Scout (NASA)

Sun

CuSP (Southwest Research Institute)

Earth

- EQUULEUS (JAXA)
- LunIR
 - (Lockheed Martin)

And Beyond

- Biosentinel (NASA)
- ArgoMoon (ESA/ASI)
- Cislunar Explorers (Cornell University)
- CU³ (University of Colorado Boulder)
- Team Miles (Fluid & Reason)

THE ADVENTURE BEGINS NOW.

