Earth Global Reference Atmospheric Model (Earth-GRAM)
GRAM Virtual Meeting

Patrick White, Earth-GRAM Lead
Marshall Space Flight Center
Natural Environments Branch, EV44
patrick.w.white@nasa.gov, 256-544-5776
Outline

• Earth-GRAM Overview
• Current Status
• Near-term Update Plans
• Ideas for New Capabilities???
What is Earth-GRAM???

- Provide monthly mean and standard deviation for any point in atmosphere
 - Monthly, Geographic, and Altitude Variation
- Earth-GRAM is a C++ software package
 - Currently distributed as Earth-GRAM 2016
- Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents
- Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime
 - Often embedded in trajectory simulation software
- Not a forecast model
- Does not readily capture localized atmospheric effects
Model Input

Range Reference
Atmosphere Option

Auxiliary Profile
Input Option
Range Reference Atmosphere (RRA) Database

- Earth-GRAM has the ability to use the RRA site specific database
 - Earth-GRAM includes 1983, 2006 and 2013 RRA database
 - 2013 RRA developed by MSFC/Natural Environments Branch for the Range Commanders Council – Meteorology Group
- Climatology built from balloon and rocketsonde measurements
- Natural Environments recommends the use of the 2013 RRA database
Perturbation Model

Values From Earth-GRAM =

Mean value + Large-scale perturbation + Small-scale perturbation

- Modeled as a wave
- Modeled as a stochastic (random) process

Driven by observed standard deviation
Earth-GRAM Output

Mean and Dispersed East-West Wind

1000 Monte Carlo Dispersed Profiles with January Monthly 3-Sigma Envelope
Earth-GRAM Output

Earth-GRAM dispersions are approximately Gaussian distributed
Current Status

• Earth-GRAM 2016 Version 1.0 released December 2016
• C++, object-oriented software package
• New Period of Record for NCEP data
• Ability to enter number of Monte Carlo runs from input
 – No longer need a number seed file
• Supporting users in the implementation of Earth-GRAM 2016
• Software Link: https://software.nasa.gov/software/MFS-32780-2
Near-Term Update Plans

• Upcoming release: Earth-GRAM 2016 Version 2.0
• Planned Release in 2018
• Planned Updates Included:
 – CorrMonte – hourly dispersions
 – CorrTraj – correlated Ballistic (Up-Down) Atmospheric Profile
 – Fairing between RRA and Earth-GRAM
 – Graphical User Interface (GUI)
 – Bug Fixes
Near-Term Update Plans, CorrMonte

- Program evaluates multiple profiles separated by a fixed time increment.
- Earth-GRAM can provide a monthly dispersion with Monte Carlo runs, CorrMonte can provide an hourly dispersion.
- CorrMonte does this by producing several profiles that are cross-correlated.
- CorrMonte is useful for providing less conservatism in certain design and operational situations.
Near-Term Update Plans, CorrMonte

1000 Cycle CorrMonte, East-West Wind (2016)

1000 3 hour dispersions

Mean of dispersions vs 1st dispersed profile
Near-Term Update Plans, CorrMonte

1000 3 hour dispersions

Mean of dispersions vs GRAM Mean
Near-Term Update Plans, CorrTraj

• Users requested the ability to correlate an atmospheric profile for a ballistic (up-down) trajectory
• Used exponential correlation from calculation of small-scale perturbation:
 \[r(\delta x) = \exp(-\delta h/L_h)\exp(-\delta z/L_z)\exp(\delta t/\tau) \]
• Test case with \(dz = 1.0 \) km, \(\delta\phi \) and \(\delta\theta \) = 0.01 and apex of trajectory = 30.0 km
Near-Term Update Plans, CorrTraj

GRAM2010 Dispersed Profile

GRAM2016V2.0 Dispersed Profile
Near-Term Update Plans, RRA-GRAM Fairing

- Currently methodology in Earth-GRAM does not handle transitions between RRA and GRAM very well
- Generated 2013 RRA cases to examine effect on GRAM profiles of temperature, east-west wind and north-south wind
- Fairied over a region of 5 km (25-30 km) between RRA and GRAM.
- Examined effect induced feature has on Monte Carlo dispersions.
Near-Term Update Plans, RRA-GRAM Fairing

RRA observations at 30 km: 31

Magnitude of E-W Wind Delta: 10 m/s
Near-Term Update Plans, RRA-GRAM Fairing

Monte Carlo dispersion without fairing

Monte Carlo dispersion with fairing
Earth-GRAM 2016 V2.0 GUI, User Inputs
Earth-GRAM 2016 V2.0 GUI, Plot
Additional Near-term Updates and Future Work

• Bug Fixes for Earth-GRAM 2016 Version 2.0
 – Precision error when converting NCEP data from float to double
 – Unable to do Monte Carlo runs for a trajectory input file
 – Limiting horizontal winds to 0.7*speed of sound
• Conduct testing for Earth-GRAM 2016 Version 2.0
• Develop Earth-GRAM 2016 User’s Guide
Ideas for New Capabilities

• New data sources?
 – Conduct study of available data sources
• Methodology for multi-body simulation?
• More defined User-Instructions?
• Boundary Layer Improvements?
 – Topographic Influence Limitation
 – Poorly defined coastline for surface type