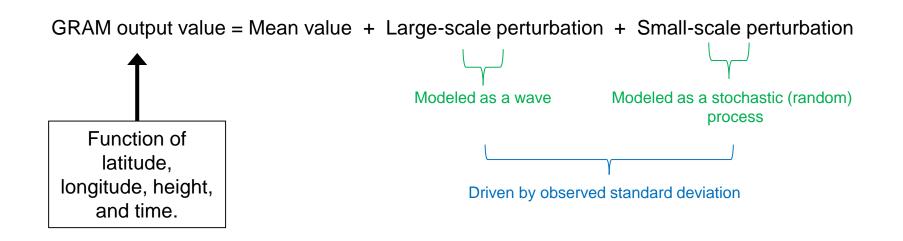

Global Reference Atmospheric Model (GRAM) Overview

Hilary L. Justh

Planetary GRAM Lead Natural Environments Branch NASA Marshall Space Flight Center <u>Hilary.L.Justh@nasa.gov</u>


GRAM Virtual Workshop, September 21, 2017

- The Global Reference Atmospheric Models (GRAMs) are engineering-level atmospheric models applicable for engineering design analyses, mission planning, and operational decision making
 - Provides mean states and measures of variability for any point in atmosphere
 - Includes seasonal, geographic, and altitude variations
 - Outputs include winds, thermodynamics, chemical composition, and radiative fluxes
 - Integrates numerous data sets into a seamless composite climatology
 - Used by engineering community because of their ability to create realistic dispersions; can be integrated into high fidelity flight dynamic simulations of launch, entry, descent and landing (EDL), aerobraking and aerocapture
 - GRAMs are not forecast models

GRAM Perturbation Model

GRAMs can quickly compute dispersed profiles appropriately correlated in time and space for an input trajectory or flight path

- MSFC Natural Environments Branch has been developing and upgrading GRAMs since 1974
- GRAM was initially developed by Jere Justus at Georgia Tech with NASA funding
 - Jere joined MSFC in 1993 where he continued to develop and maintain the GRAMs until his retirement in 2011
- Earth-GRAM 2016 has been released in C++
- Current versions of the following GRAMs are written in Fortran:
 - Mars-GRAM 2010
 - Venus-GRAM 2005 Rel. Oct 2009
 - Titan-GRAM 2004
 - Neptune-GRAM 2004
- Available through the NASA Software Catalog
 <u>https://software.nasa.gov/</u>

GRAM Team

- GRAMs are maintained at MSFC by the GRAM Team
 - Hilary Justh Planetary GRAM Lead (Mars, Venus, Neptune and Titan-GRAM)
 - Patrick White Earth-GRAM
 - Lee Burns Mars-GRAM

GRAM Analyses are Easily Customizable

- Includes user-selectable inputs specifying particular analysis scenarios
 - Scalable perturbations for analyzing dispersed environments
 - Individual scale parameters for density, wind, and boundary layer dynamics
 - Variable solar activity
- Provides flexibility through runtime options.
 - Auto-generated profiles with variable step sizes
 - Detailed perturbation model for applications in Monte Carlo simulations
 - User-defined trajectory files
 - User-specified auxiliary profile option for detailed analysis along an observed corridor
 - Range Reference Atmospheres for site-specific analysis (Earth-GRAM only)

GRAMs are a Critical Tool Set

- GRAMs influence mission selection and decisions as a result they need to be treated as a critical tool set to be maintained
- Examples include:
 - PrePhase A: (many landing sites, characterize trends)
 - EDL Architecture Study: Human Mars Missions
 - Phase A: Proposals: ROSES/Discovery/New Frontiers
 - Phase C&D: Space Launch System (SLS), Orion, Commercial Crew Program (CCP)
 - Phase E: Flight operations:
 - Used by Mars Atmosphere and Volatile Evolution mission (MAVEN) to develop maneuver strategies
 - Mars Science Laboratory (MSL) used Mars-GRAM perturbation models
 - Studies: Academia/ Industry/ International
 - Mars Aerocapture Systems Study
 - NASA Engineering and Safety Center (NESC) Autonomous Aerobraking Study
 - Neptune Aerocapture Study, etc.

Program Utilization of GRAMs

- Earth-GRAM
 - SLS, Orion, CCP (both SpaceX and Boeing), OSIRIS-Rex, Ares I-X, MLAS-2, Space Shuttle, Orbital ISS down mass, Stardust, Genesis, LDSD, and Exo-Break
- Mars-GRAM
 - MAVEN, MGS, Odyssey, MRO, MER, MSL, Human Architecture Team (HAT), InSight, and NASA Engineering Safety Center (NESC) Autonomous Aerobraking
- Venus-GRAM
 - Used in multiple studies and proposals and NESC Autonomous Aerobraking
- Titan-GRAM
 - Huygens (both NASA and ESA), Cassini and NESC Autonomous Aerobraking
- Neptune-GRAM
 - Used in various studies and proposals

Needed GRAM Investments

- Stable and sufficient funding source to address current limitations and accomplish near and long term goals for GRAM development
 - Current funding:
 - Earth-GRAM: 1.0 FTE (Single civil servant)
 - Planetary GRAMs: No dedicated funding source
 - Many projects, proposals, industry, academia use GRAMs, but no support is in place to maintain and update all versions consistently and regularly
- Dedicated GRAM team focused on specific areas of expertise
 - Robust user support to address both current implementations and future capability enhancements
 - Greater continuity of knowledge and expertise.
- Increased integration with the GRAM user communities
 - Attend conferences, analysis group meetings, etc. to gain a greater understanding of user needs and applications
 - Improved visibility to expand user base

Proposed Forward Work

- Maintain consistent support and maintenance across all GRAM versions
 - Establish formal communication between GRAM users and developers; monitor shortcomings, expand capability, and fix bugs
 - Establish formal and continuous relationship between GRAM developers and model providers to ensure regular model updates
 - Establish a process to obtain models developed outside of NASA
 - Incorporate surface and orbiting data, correlated where possible, into GRAM global circulation and dispersions models
- Work with planetary missions to obtain and incorporate the latest versions of atmosphere relevant data sets
- Incorporate MAVEN data and provide an upgraded Mars-GRAM to the project for evaluation during the extended mission
- Upgrade Mars-GRAM for industry, Mars 2026/28 studies, etc.
- Upgrade Venus-GRAM for New Frontiers and Discovery

Proposed Forward Work Continued

- Update Neptune and Titan-GRAM
- Develop Jupiter, Saturn and Uranus-GRAM for New Frontiers and mission studies
- Evaluate additional features (e.g. destination specific uncertainty models, mesoscale model accommodation and interfaces)
- Document and present updated GRAM comparisons to recently acquired data sets
- Attend atmosphere modeling conferences
- Convert GRAM codes to C++
- Test, validate and verify all new GRAM versions

Acknowledgement

• Alicia Dwyer Cianciolo for her strong support and advocacy for the GRAMs.