Radiation Effects: Overview for Space Environment Specialists

Ray Ladbury
Radiation Effects and Analysis Group
NASA Goddard Space Flight Center
Key to Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSEE</td>
<td>Destructive single-event effect</td>
</tr>
<tr>
<td>GCR</td>
<td>Galactic cosmic ray</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics processing unit</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>LET</td>
<td>Linear energy transfer</td>
</tr>
<tr>
<td>p+</td>
<td>Proton</td>
</tr>
<tr>
<td>SEB</td>
<td>Single-event burnout</td>
</tr>
<tr>
<td>SEE</td>
<td>Single-event effect</td>
</tr>
<tr>
<td>SEGR</td>
<td>Single-event gate rupture</td>
</tr>
<tr>
<td>SEL</td>
<td>Single-event latchup</td>
</tr>
<tr>
<td>SV</td>
<td>Sensitive volume</td>
</tr>
<tr>
<td>VDS</td>
<td>Drain-source voltage</td>
</tr>
<tr>
<td>WC</td>
<td>Worst case</td>
</tr>
<tr>
<td>xstr</td>
<td>Transistor</td>
</tr>
<tr>
<td>Z</td>
<td>Ion atomic number</td>
</tr>
</tbody>
</table>
Radiation Effects and the Space Environment

• Motivation: Mike Xapsos 2016 NSREC paper proposed replacing conventional margin-based RHA approach w/ choice of environment confidence + success probability for part
 • Issue: Margin covers a lot of sins in addition to uncertainty on the environment
 • What are implications for TID and SEE testing and analysis of an idea that makes sense?

• Types of Radiation Effects and Environments Important for Them
 • Cumulative—Total Ionizing Dose (TID) and Displacement Damage Dose (DDD)
 • Single-Event Effects (SEE)
 • Destructive SEE
 • Nondestructive SEE

• Sources of Error
 • Cumulative Effects
 • SEE

• Hardness Assurance Methodologies
 • TID and DDD
 • SEE

One Slide: Cumulative Effects of Radiation Environments

- Charge trapped in oxides alters electrical properties of transistors and other devices.

- Main particles of concern are protons and electrons
 - Trapped proton, Cumulative Solar Protons
 - Trapped electrons (Earth, Jovian...)
 - GCR, solar heavy ion fluxes too low to worry about
 - Transported environment important

- Cumulative effect, so short-term fluctuations not a concern except for short missions (<2 years)

- Greater concern on longer missions

- Hardness Assurance Approach
 - Test sample representative of flight lot w/ x/γ rays
 - Looks like wear-out (failure rate increases w/ dose)
 - Overtest and RDM effective mitigations by ensuring failure rate remains low
 - Redundancy ineffective as a mitigation

- Affects mainly minority-carrier devices

- Main concern: protons + electrons for some devices
 - Trapped proton, Cumulative Solar Protons
 - Trapped electrons (Earth, Jovian...)
 - GCR, solar heavy ion fluxes too low to worry about

- Cumulative effect, so short-term fluctuations not a concern except for short missions (<2 years)

- Greater concern on longer missions

- Hardness Assurance approach similar to TID
 - Less dependence on bias, dose rate, etc
 - Less part-to-part variation...usually

One Slide: Single-Event Effects (SEE)

- SEE caused by ionizing particle traversing device SV
 - Direct ionization—particle from mission environment
 - GCR heavy-ion, solar heavy-ion environments
 - Charge depends on linear energy transfer (LET) and path length
 - Indirect ionization—secondary particle produced by particle (usually proton) from mission environment
 - Solar and Trapped proton environments
 - Low-energy proton (direct ionization)
 - Transported environment for deep-submicron CMOS
 - Multiple scattering important for mechanism
 - Poisson process, so constant probability (per ion)

- Consequences of SEE
 - Momentary disturbance of device output (SET)
 - Corruption of one or more bits of data (SEU)
 - Corruption of large amounts of data (block error)
 - Permanent corruption of data bit (stuck bit)
 - Recoverable loss of device functionality (SEFI)
 - Catastrophic failure

- RHA approach: Any SEE can happen any time—Need to test to expose susceptibilities, not to the environment
 - \(10^7\) ions/cm\(^2\) \(~913\) years at ISS (LET>1 MeVcm\(^2\)/mg)
 - \(~347\) years at GEO (LET>1 MeVcm\(^2\)/mg)

- Constant failure rate \(\rightarrow\) redundancy is effective mitigation
 - Need worst case (e.g. WC SPE) SEE rates as well as mean rates
 - CRÈME-96 has used October '89 SPE
 - Ability to get Solar Event LET spectra vs. confidence to feed into CRÈME-96 would be interesting
 - Redundancy implemented at all levels—cell to spacecraft
 - Must pay in currency of the realm—bits for bits, functional parts to maintain availability, cold spares to improve survivability

RHA is About Error Sources and Control

• Space Environment
 • Models only good if data underlying them is representative of current conditions
 • Environment is constantly fluctuating—not reflected in all models
 • Goodness of models depends on mission duration, shielding, etc.

• Sample Variation (part-to-part, lot-to-lot, part-type-to-part-type)
 • Basic question: Is test sample sufficiently representative of flight parts?
 • Quandary: Sample size must be large enough to define distribution...but...size required to define distribution depends on what the distribution is
 • Pathological distribution (e.g. multiple modes) require binomial sampling

• Other Statistical Errors
 • Poisson errors on event counts determining SEE cross sections
 • Sampling errors on time-dependent, intermittent or rare errors/failsures

• Systematic errors
 • “Mistakes” in measurement, test procedure, etc.
 • Incorrect assumptions in analysis (e.g. assuming incorrect distribution form).
TID RHA Errors

- Environment is only one source of error
 - Mainly issue for short missions
- Binomial sampling errors may dominate
 - 5 parts → 41% CL that $Ps \geq 0.9$, 83% CL $Ps > 0.7$
 - Valid even for multimodal distributions
 - Margin does not help—only looks at proportions above and below test level—not how much
- Most TID RHA assumes failure distributions well behaved
 - Parameter estimates converge rapidly w/ sample size
 - Much higher confidence and Ps possible w/ smaller samples
 - Overtest, design margin effective strategies to avoid failure
- But...trade confidence + $>Ps$ for possibility of systematic error
 - How common are pathological failure distributions?
 - How likely is a small sample-size test to detect pathology?
 - What should we look for? (technology? data characteristics?)

TID RHA: Pathological Distributions Do Occur

• Many parts known to exhibit pathological TID response (ADI OP484, OP400, AD590, National LM111, many discretes, commercial parts such as SDRAMs)

• Bimodal distributions (e.g. OP484), thick tailed distributions (2N5019 JFET)

• What to do?
 • Similarity is not a reliable indicator—several ADI bipolar devices show anomalies; most do not
 • Test larger samples
 • Look for “outliers”
 • Combine lots to see if “outliers” resolve into thick tails or multiple modes

Conventional RHA Approach Uses Radiation Design Margin (RDM)

Max Dose = “Worst-Case” TID Failure Level/RDM

Not where you want to be.

- Conventional approach to TID RHA defines part TID capability or failure level for a part type (WCFL)
- Radiation Design Margin (RDM) defined by project requirements
- Maximum allowed dose for part type = WCFL/RDM

What is WCFL?

- Mean, Median and Mode of failure distribution are not appropriate—failure probability too high

1) Worst performing part in TID lot test
 - Advantage—has an empirical basis—does not assume a statistical model
 - Disadvantage—Odd statistical properties—testing more parts improves knowledge of failure distribution, but WCFL gets worse with sample size

2) Ps=X%, CL=Y% one-sided tolerance limit (KTL)
 - \[\mu \pm KTL(n,Ps,CL) \times \sigma \text{ (Example 99/90 limit)} \]
 - Advantage—good statistical properties
 - Disadvantage—assumes normal or lognormal distribution

3) Worst performing part for all lots of part tested
 - Advantage—Empirical and more conservative than 1); well suited to high-volume qualification program
 - Disadvantage—still has same odd statistical properties as 1)—more lots tested gives more conservative value

- 2) best in most cases; or 3) in high-production operations or if normality in doubt
Radiation Design Margin vs. Confidence and Success Probability

- Xapsos proposed replacing RDM with requirement at success probability exceed X% in Y% CL environment
 - Offers improved flexibility and ability to combine radiation and reliability +it is really what we want to know
 - Need to understand why current system works (mostly) to assess impact of change.
- So, why does a fixed 2x-4x RDM work as well as it does?
 - For short missions:
 - Environmental uncertainty is higher—less margin available for uncertainty in TID failure distribution
 - But, TID is lower, so fewer parts to worry about failing
 - For longer mission:
 - Higher TID means more parts prone to failure
 - Lower environmental uncertainty—more margin available for uncertainty in TID failure distribution
- Any approach must reflect uncertainties in failure distribution as well as radiation environment
- Part-to-part, lot-to-lot and part-type-to-part-type variation also require statistical treatment
 - Confidence level applies to inference of WCFL from data
 - What does 90% CL on failure distribution in a 90% WC environment mean?
 - Note: Same question also applied when dealing with RDM—it was just more hidden
- And as with any method assuming a distribution, how do we deal with the risk of systematic errors?
SEE Hardness Assurance

• Goals of SEE Hardness Assurance
 1) Identify all SEE modes to which part is susceptible
 a) Spatial coverage—ions/cm² or ions per device (transistor, gate, etc.)
 b) Temporal and Logic masking also affect coverage
 2) Map out dependence of SEE modes vs. collected charge/LET/(Z, energy, angle)
 3) Estimate SEE rate using above information (if possible)
 a) Use CRÈME-96 and σ vs. LET curve if
 i. Sensitive Volume (SV) is rectangular parallelepiped
 ii. Susceptibility depends only on LET (or effective LET)—no nuclear/secondary processes
 iii. LET in SV~constant
 b) Otherwise, use Monte Carlo SEE rate estimation (CRÈME-MC, MRED) and σ vs. Ion energy, species, angle..., or
 c) Bound using lethal-ion type calculation (SEGR and SEB)
 d) Assess implications for mitigation strategies

• What environments are interesting?
 • Background Environment to answer: “Will the device be able to perform its function in the environment?”
 • GCR + Average Solar and trapped protons
 • “Peak” Environment to answer: Will redundancy mitigation be compromised by peak environment?
 • SPE Heavy-ion + proton environments (but which SPE?)
Spatial Coverage: How Much is Enough?

- If fluence too low, SEE modes go undiscovered—mode could be seen on orbit even if not seen in test
- “Good enough” depends on device feature sizes, device complexity, application, but also on track size and how often susceptible features repeated within device
 - Measure of device complexity may be total # of transistors, or transistors/µm², although function (e.g. processor, memory, FPGA...) also an indicator
 - More on track size later.

![Simulated Ion Strikes in 60x70 µm² portion of 512 Mbit SDRAM](image)

- \(1 \times 10^{10}\) 200 MeV protons/cm²
- \(1 \times 10^7\) heavy ions/cm²

What Makes a Good SEE Test?

- A Good SEE Test
 - # of LET values ≥ 6; 12 values reduces errors ~60%
 - # events per cross section enough to make error bars negligible
 - Both # events and # LET values improve fit

- Errors on rate scale ~square of errors on LET₀ or width
 - Worse for very small limiting cross sections

- Errors on rate scale ~linearly w/ error on σₗₐₘ
 - Again, worse for very small σₗₐₘ

- Typical test
 - ≥2 parts
 - >>6-12 runs at different LET values
 - ≥ 1 low-LET run w/ fluence >10⁷ ions/cm² to find LET₀
 - ≥ 1 high-LET run w/ fluence >10⁷ ions/cm² to preclude presence of undetected destructive/disruptive SEE modes

- Total coverage of typical SEE test usually ≥10⁸ ions/cm² for all ions of all Z, energy, angle

IRPP rate estimation separates device response and environment portions of integral

- Fit to device response (σ vs. LET) usually “worst case” — same independent of environment

- At least 4 parameters, onset LET (LET₀), limiting cross section (σₗₐₘ), Weibull width and shape parameters

How Good Are SEE Rates?

• Statistical errors for SEE can be controlled, so accurate SEE rate estimation should be possible

• Ed Petersen found on-orbit rates agreed with predicted rates within ~2x (CRÈME-96 and AP8)

• SDRAMs (Ladbury-2009 and Miller-2009) agree w/in ~3-5x if knowledge of shielding, statistics adequate
 • Rates for disruptive errors (SEFI, block errors, etc) due to poor statistics
 • Rates for parts in Van Allen Belts sensitive to shielding
 • Fabricated in CMOS processes w/ feature sizes down to ~130 nm, so CRÈME-96 can be adequate to this level

• For smaller feature sizes, situation is more muddled
 • Expect departures from RPP, but rate estimation also more sensitive to errors on fit

• Above indicates errors due to environment over long term <~2x

• So, we’re good, right?

• Multiple Sources of Systematic Error
 • Nuclear Effects
 • Scattering of high-Z nuclei by light nuclei
 • p + Au fission events

• Departures from LET
 • High-energy ion tracks have more energetic delta rays
 • More MBUs
 • Ultra-high energy events
 • Multi-node upsets in hardened logic

• Proton upset via direct ionization
 • Low-energy proton environment variable and uncertain
 • Detailed shielding model essential to determine low-energy proton flux in the device SV
 • Multiple scattering plays critical role in mechanism

• CRÈME-96 won’t work for these mechanisms

• Monte Carlo methods can work, but we’re still figuring out how to use them.

Track Structure: Wild Card of the Future (and always will be?)

• Track structure has always been a wild card
 • Up to now a wild card with few consequences
• Transistors now have dimensions ~100 µm
 • Energy deposition not uniform @ high energy
 • \(\delta \)-ray can traverse dozens of transistors
 • \(\delta \)-ray multiple scattering important
 • Implications for MBU and SEE hardening

28 GeV Fe ion (500 MeV/u) 280 MeV Fe ion (5 MeV/u)

\(\delta \)-rays

Courtesy of Robert Reed, Vanderbilt University
Conclusions: TID and DDD

• Different environments important for different missions
 • TID: All ionizing particles contribute—solar and trapped protons and electrons dominate
 • Long missions—average environment dominates
 • Short missions—one large solar particle event can dominate TID for missions <1-2 years
 • DDD: Massive, energetic particles—protons (trapped and solar) usually the main contributors, also electrons
 • Situation similar to TID—long missions dominated by average; short missions can be dominated by SPE
 • Jupiter—electrons energetic and plentiful...can contribute to DDD

• Environmental uncertainty is only one source of error; usually not dominant
 • TID: Part-to-part variation usually the dominant source of error
 • Very large sample sizes required to have high confidence of high success probability
 • Binomial sampling has to work for even pathological distributions
 • Increased Radiation Design margin does not help
 • Assuming well behaved distribution allows reduced sample size for higher Ps at higher confidence
 • Replaces sampling error with systematic error if distribution is pathological—which can occur
 • Important to look for signs of pathology
 • Going to environmental confidence + success probability may force more rigorous treatment of variability and pathologies

• Displacement damage somewhat more tractable
 • Pathological distributions less common; fewer application conditions
Conclusions: Single-Event Effects

- Important fact about SEE—can happen any time, regardless of probability
 - First goal of testing is to identify SEE susceptibilities, NOT to bound relevant environments
 - Second goal: Rate estimation combines device susceptibilities + Environment Models

- Environments important for Single-event effects: GCR+ solar heavy ions + protons + trapped protons
 - Average environment important for ensuring part meets its requirements
 - Peak environment (for given confidence) important because redundancy is the predominant mitigation for SEE
 - SEE rate for a redundant system scales as a power of particle flux, rather than linearly
 - Low-energy protons highly variable, uncertain, and role of multiple scattering makes mechanism “fuzzy”
 - Electrons starting to cause SEE as well—multiple scattering even more important (no Bragg peak)

- Many sources of error other than environment
 - Poisson errors on cross section can dominate for small event counts (especially for DSEE, SEFI, disruptive errors)
 - Deviations from CRÈME-96 model assumptions (constant LET in single RPP SV, no nuclear/secondary effects)
 - Monte Carlo with accurate physics needed if deviations significant.

- Track structure effects may assume greater importance as devices continue to shrink
 - Less containment of ionization within any given track radius
 - Process more random
 - Mostly important for multi-node effects (MBU and upset of cells hardened by redundant nodes)