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Key to Abbreviations and Symbols

DSEE Destructive single-event effect SEE Single-event effect

GCR Galactic cosmic ray SEGR Single-event gate rupture

GPU Graphics processing unit SEL Single-event latchup

IC Integrated circuit SV Sensitive volume

I/O Input/output VDS Drain-source voltage

LET Linear energy transfer WC Worst case

p+ Proton xstr Transistor

SEB Single-event burnout Z Ion atomic number
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Radiation Effects and the Space Environment
• Motivation: Mike Xapsos 2016 NSREC paper proposed replacing conventional margin-

based RHA approach w/ choice of environment confidence +success probability for part
• Issue: Margin covers a lot of sins in addition to uncertainty on the environment 
• What are implications for TID and SEE testing and analysis of an idea that makes sense?

• Types of Radiation Effects and Environments Important for Them
• Cumulative—Total Ionizing Dose (TID) and Displacement Damage Dose (DDD)
• Single-Event Effects (SEE)

• Destructive SEE
• Nondestructive SEE

• Sources of Error
• Cumulative Effects
• SEE

• Hardness Assurance Methodologies
• TID and DDD
• SEE
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One Slide: Cumulative Effects of Radiation Environments

• Main particles of concern are protons and electrons
• Trapped proton, Cumulative Solar Protons
• Trapped electrons (Earth, Jovian…)
• GCR, solar heavy ion fluxes too low to worry about
• Transported environment important

• Cumulative effect, so short-term fluctuations not a 
concern except for short missions (<2 years)

• Greater concern on longer missions

• Hardness Assurance Approach
• Test sample representative of flight lot w/ x/γ rays
• Looks like wear-out (failure rate increases w/ dose)

• Overtest and RDM effective mitigations by ensuring failure 
rate remains low

• Redundancy ineffective as a mitigation

• Affects mainly minority-carrier devices

• Main concern: protons + electrons for some devices
• Trapped proton, Cumulative Solar Protons
• Trapped electrons (Earth, Jovian…)
• GCR, solar heavy ion fluxes too low to worry about

• Cumulative effect, so short-term fluctuations not a 
concern except for short missions (<2 years)

• Greater concern on longer missions

• Hardness Assurance approach similar to TID
• Less dependence on bias, dose rate, etc
• Less part-to-part variation…usually

• Charge trapped in oxides 
alters electrical properties 
of transistors and other 
devices.

• Displaced atoms in semiconductor 
crystal lattice form vacancies and 
interstitials that alter semiconductor 
electrical properties

To be published on the Space Environment Engineering and Science Applications Workshop (SEESAW) website, https://cpaess.ucar.edu. 4



One Slide: Single-Event Effects (SEE)

• SEE caused by ionizing particle traversing device SV
• Direct ionization—particle from mission environment

• GCR heavy-ion, solar heavy-ion environments
• Charge depends on linear energy transfer (LET) and path 

length
• Indirect ionization—secondary particle produced by 

particle (usually proton) from mission environment
• Solar and Trapped proton environments

• Low-energy proton (direct ionization)
• Transported environment for deep-submicron CMOS
• Multiple scattering important for mechanism

• Poisson process, so constant probability (per ion)

• Consequences of SEE
• Momentary disturbance of device output (SET)
• Corruption of one or more bits of data (SEU)
• Corruption of large amounts of data (block error)
• Permanent corruption of data bit (stuck bit)
• Recoverable loss of device functionality (SEFI)
• Catastrophic failure

• RHA approach:  Any SEE can happen any time—Need to test 
to expose susceptibilities, not to the environment

• 107 ions/cm2 ~913 years at ISS (LET>1 MeVcm2/mg)
• ~347 years at GEO (LET>1 MeVcm2/mg)

• Constant failure rate→redundancy is effective mitigation
• Need worst case (e.g. WC SPE) SEE rates as well as mean rates

• CRÈME-96 has used October ‘89 SPE
• Ability to get Solar Event LET spectra vs. confidence to feed into 

CRÈME-96would be interesting
• Redundancy implemented at all levels—cell to spacecraft

• Must pay in currency of the realm—bits for bits, functional parts to maintain 
availability, cold spares to improve survivability
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RHA is About Error Sources and Control
• Space Environment

• Models only good if data underlying them is representative of current conditions
• Environment is constantly fluctuating—not reflected in all models
• Goodness of models depends on mission duration, shielding, etc. 

• Sample Variation (part-to-part, lot-to-lot, part-type-to-part-type)
• Basic question: Is test sample sufficiently representative of flight parts? 
• Quandary: Sample size must be large enough to define distribution…but…size required to define 

distribution depends on what the distribution is
• Pathological distribution (e.g. multiple modes) require binomial sampling

• Other Statistical Errors
• Poisson errors on event counts determining SEE cross sections
• Sampling errors on time-dependent, intermittent or rare errors/failures

• Systematic errors
• “Mistakes” in measurement, test procedure, etc.
• Incorrect assumptions in analysis (e.g. assuming incorrect distribution form).
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TID RHA Errors

• Environment is only one source of error
• Mainly issue for short missions

• Binomial sampling errors may dominate
• 5 parts→41% CL that Ps≥0.9, 83% CL Ps>0.7
• Valid even for multimodal distributions
• Margin does not help—only looks at proportions 

above and below test level—not how much
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• Most TID RHA assumes failure distributions well behaved
• Parameter estimates converge rapidly w/ sample size
• Much higher confidence and Ps possible w/ smaller samples
• Overtest, design margin effective strategies to avoid failure

• But…trade confidence + >Ps for possibility of systematic error
• How common are pathological failure distributions?
• How likely is a small sample-size test to detect pathology?
• What should we look for? (technology? data characteristics?)

Assumes 0 failures observed
Binomial Sampling
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TID RHA: Pathological Distributions Do Occur

• Many parts known to exhibit pathological TID response (ADI OP484, OP400, AD590, National LM111, many 
discretes, commercial parts such as SDRAMs)

• Bimodal distributions (e.g.OP484), thick tailed distributions (2N5019 JFET)

• What to do?
• Similarity is not a reliable indicator—several ADI bipolar devices show anomalies; most do not
• Test larger samples
• Look for “outliers”
• Combine lots to see if “outliers” resolve into thick tails or multiple modes
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Conventional RHA Approach Uses Radiation Design Margin (RDM)

• Mean, Median and Mode of failure distribution are not 
appropriate--failure probability too high

1) Worst performing part in TID lot test
• Advantage—has an empirical basis--does not assume a 

statistical model
• Disadvantage—Odd statistical properties—testing more 

parts improves knowledge of failure distribution, but 
WCFL gets worse with sample size

2) Ps=X%, CL=Y% one-sided tolerance limit (KTL)
• µ ±KTL(n,Ps,CL)*σ (Example 99/90 limit)
• Advantage—good statistical properties 
• Disadvantage—assumes normal or lognormal distribution

3) Worst performing part for all lots of part tested
• Advantage—Empirical and more conservative than 1); 

well suited to high-volume qualification program
• Disadvantage—still has same odd statistical properties as 

1)—more lots tested gives more conservative value

• 2) best in most cases; or 3) in high-production 
operations or if normality in doubt

• Conventional approach to TID RHA defines part TID 
capability or failure level for a part type (WCFL)

• Radiation Design Margin (RDM) defined by project 
requirements

• Maximum allowed dose for part type =WCFL/RDM

Max Dose = “Worst-Case” TID Failure Level/RDM
What is WCFL?

X Not where you 
want to be.
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Radiation Design Margin vs. Confidence and Success Probability

• Xapsos proposed replacing RDM with requirement at success probability exceed X% in Y% CL environment 
• Offers improved flexibility and ability to combine radiation and reliability +it is really what we want to know
• Need to understand why current system works (mostly) to assess impact of change.

• So, why does a fixed 2x-4x RDM work as well as it does?
• For short missions:

• Environmental uncertainty is higher—less margin available for uncertainty in TID failure distribution
• But, TID is lower, so fewer parts to worry about failing

• For longer mission:
• Higher TID means more parts prone to failure
• Lower environmental uncertainty—more margin available for uncertainty in TID failure distribution

• Any approach must reflect uncertainties in failure distribution as well as radiation environment

• Part-to-part, lot-to-lot and part-type-to-part-type variation also require statistical treatment
• Confidence level applies to inference of WCFL from data
• What does 90% CL on failure distribution in a 90% WC environment mean?
• Note: Same question also applied when dealing with RDM—it was just more hidden

• And as with any method assuming a distribution, how do we deal with the risk of systematic errors?
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SEE Hardness Assurance
• Goals of SEE Hardness Assurance

1) Identify all SEE modes to which part is susceptible
a) Spatial coverage—ions/cm2 or ions per device (transistor, gate, etc.)
b) Temporal and Logic masking also affect coverage

2) Map out dependence of SEE modes vs. collected charge/LET/(Z, energy, angle)
3) Estimate SEE rate using above information (if possible)

a) Use CRÈME-96 and σ vs. LET curve if
i. Sensitive Volume (SV) is rectangular parallelepiped
ii. Susceptibility depends only on LET (or effective LET)—no nuclear/secondary processes
iii. LET in SV~constant

b) Otherwise, use Monte Carlo SEE rate estimation (CRÈME-MC, MRED) and σ vs. Ion energy, species, angle…, or
c) Bound using lethal-ion type calculation (SEGR and SEB)
d) Assess implications for mitigation strategies

• What environments are interesting?
• Background Environment to answer: “Will the device be able to perform its function in the environment?”

• GCR + Average Solar and trapped protons
• “Peak” Environment to answer: Will redundancy mitigation be compromised by peak environment?

• SPE Heavy-ion + proton environments (but which SPE?)
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Spatial Coverage: How Much is Enough?

• If fluence too low, SEE modes go undiscovered—mode could be seen on orbit even if not seen in test

• “Good enough” depends on device feature sizes, device complexity, application, but also on track size and how 
often susceptible features repeated within device

• Measure of device complexity may be total # of transistors, or transistors/µm2, although function (e.g. processor, memory, 
FPGA…)also an indicator

• More on track size later.

1E10 200 MeV protons/cm2

Recoil ion strikes
∀ Z, Angle, Energy

1E7 heavy ions/cm2

Single Z, Angle, Energy

Simulated Ion Strikes in 60x70 µm2 portion of 512 Mbit SDRAM 
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What Makes a Good SEE Test?
• A Good SEE Test

• # of LET values ≥ 6; 12 values reduces errors ~60%
• # events per cross section enough to make error bars 

negligible
• Both # events and # LET values improve fit

• Errors on rate scale ~square of errors on LET0 or width
• Worse for very small limiting cross sections

• Errors on rate scale ~linearly w/ error on σlim
• Again, worse for very small σlim

• Typical test 
• ≥2 parts
• >>6-12 runs at different LET values
• ≥ 1 low-LET run w/ fluence >107 ions/cm2 to find LET0

• ≥ 1 high-LET run w/ fluence >107 ions/cm2 to preclude 
presence of undetected destructive/disruptive SEE modes

• Total coverage of typical SEE test usually ≥108 ions/cm2

for all ions of all Z, energy, angle

• IRPP rate estimation separates device response and 
environment portions of integral

• Fit to device response (σ vs. LET) usually “worst case”—
same independent of environment

• At least 4 parameters, onset LET (LET0), limiting cross 
section (σlim), Weibull width and shape parameters

To be published on the Space Environment Engineering and Science Applications Workshop (SEESAW) website, https://cpaess.ucar.edu. 13



How Good Are SEE Rates?

• Statistical errors for SEE can be controlled, so accurate 
SEE rate estimation should be possible

• Ed Petersen found on-orbit rates agreed with predicted 
rates within ~2x (CRÈME-96 and AP8)

• SDRAMs (Ladbury-2009 and Miller-2009) agree w/in ~3-
5x if knowledge of shielding, statistics adequate 

• Rates for disruptive errors (SEFI, block errors, etc) due to 
poor statistics

• Rates for parts in Van Allen Belts sensitive to shielding
• Fabricated in CMOS processes w/ feature sizes down to 

~130 nm, so CRÈME-96 can be adequate to this level

• For smaller feature sizes, situation is more muddled
• Expect departures from RPP, but rate estimation also more 

sensitive to errors on fit

• Above indicates errors due to environment over long 
term <~2x

• So, we’re good, right?

• Multiple Sources of Systematic Error
• Nuclear Effects

• Scattering of high-Z nuclei by light nuclei
• p + Au fission events

• Departures from LET
• High-energy ion tracks have more energetic delta rays

• More MBUs
• Ultra-high energy events
• Multi-node upsets in hardened logic

• Proton upset via direct ionization
• Low-energy proton environment variable and uncertain
• Detailed shielding model essential to determine low-

energy proton flux in the device SV
• Multiple scattering  plays critical role in mechanism

• CRÈME-96 won’t work for these mechanisms

• Monte Carlo methods can work, but we’re still figuring 
out how to use them.
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Track Structure: Wild Card of the Future (and always will be?)

• Track structure has always been a wild card
• Up to now a wild card with few consequences

• Transistors now have dimensions ~100 µm
• Energy deposition not uniform @ high energy
• δ ray can traverse dozens of transistors
• δ ray multiple scattering important
• Implications for MBU and SEE hardening

δ-
rays 

280 MeV Fe ion (5 MeV/u)28 GeV Fe ion (500 MeV/u)

Courtesy of Robert Reed, Vanderbilt  University
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Conclusions: TID and DDD
• Different environments important for different missions

• TID: All ionizing particles contribute—solar and trapped protons and electrons dominate
• Long missions—average environment dominates 
• Short missions—one large solar particle event can dominate TID for missions <1-2 years

• DDD: Massive, energetic particles—protons (trapped and solar) usually the main contributors, also electrons
• Situation similar to TID—long missions dominated by average; short missions can be dominated by SPE
• Jupiter—electrons energetic and plentiful…can contribute to DDD

• Environmental uncertainty is only one source of error; usually not dominant
• TID: Part-to-part variation usually the dominant source of error

• Very large sample sizes required to have high confidence of high success probability
• Binomial sampling has to work for even pathological distributions
• Increased Radiation Design margin does not help

• Assuming well behaved distribution allows reduced sample size for higher Ps at higher confidence
• Replaces sampling error with systematic error if distribution is pathological—which can occur
• Important to look for signs of pathology 
• Going to environmental confidence + success probability may force more rigorous treatment of variability and pathologies

• Displacement damage somewhat more tractable
• Pathological distributions less common; fewer application conditions
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Conclusions: Single-Event Effects
• Important fact about SEE—can happen any time, regardless of probability

• First goal of testing is to identify SEE susceptibilities, NOT to bound relevant environments
• Second goal: Rate estimation combines device susceptibilities + Environment Models

• Environments important for Single-event effects: GCR+ solar heavy ions + protons + trapped protons
• Average environment important for ensuring part meets its requirements
• Peak environment (for given confidence) important because redundancy is the predominant mitigation for SEE

• SEE rate for a redundant system scales as a power of particle flux, rather than linearly
• Low-energy protons highly variable, uncertain, and role of multiple scattering makes mechanism “fuzzy”
• Electrons starting to cause SEE as well—multiple scattering even more important (no Bragg peak)

• Many sources of error other than environment
• Poisson errors on cross section can dominate for small event counts (especially for DSEE, SEFI, disruptive errors)
• Deviations from CRÈME-96 model assumptions (constant LET in single RPP SV, no nuclear/secondary effects)

• Monte Carlo with accurate physics needed if deviations significant.

• Track structure effects may assume greater importance as devices continue to shrink
• Less containment of ionization within any given track radius
• Process more random
• Mostly important for multi-node effects (MBU and upset of cells hardened by redundant nodes)
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