
Austin Pope Joseph NIFS Intern Kennedy Space Center

NASA KSC Intern Final Report – 2017-11-14

Command and Control Software Development
Memory Management

Student Name: Austin Pope Joseph
Academic Level: Senior
Academic Major: Electrical Engineering
Academic Minor: Mathematics
Academic Institution: Portland State University

Mentor Name: Jamie Szafran
Mentor Job Title: Computer Engineer, AST
Org Code/Branch: NE-XS/Software Branch
Division: NE-X Exploration Systems & Operations Division

Austin Pope Joseph NIFS Intern Kennedy Space Center

I. Nomenclature

GSDO – Ground Systems Development and Operations

KSC – Kennedy Space Center

COTS – Commercial Off the Shelf

CSCI – Computer Software Configuration Item

CIS – Continuous Integration Server

SCM – Software Configuration Management (application)

Mock File – Files that contain code meant to emulate methods in libraries the

 system under test would call.

Directly Lost (memory leak) – When the pointer to a block of allocated memory

 goes out of scope without deallocating the memory it pointed to.

Indirectly Lost (memory leak) – Similar to directly lost except the pointer points

 to an object that used to be pointed at the lost memory block.

Possibly Lost (memory leak) – The result of an interior pointer. The memory

 management program can’t be certain the memory was handled

 correctly.

malloc()/new – Methods to dynamically allocate memory in C and/or C++.

free()/delete – Methods to deallocate dynamic memory created by

 malloc()/new.

II. Introduction

 This internship was initially meant to cover the implementation of unit test

automation for a NASA ground control project. As is often the case with large

development projects, the scope and breadth of the internship changed.

Instead, the internship focused on finding and correcting memory leaks and

errors as reported by a COTS software product meant to track such issues.

 Memory leaks come in many different flavors and some of them are more

benign than others. On the extreme end a program might be dynamically

allocating memory and not correctly deallocating it when it is no longer in use.

This is called a direct memory leak and in the worst case can use all the available

memory and crash the program. If the leaks are small they may simply slow the

program down which, in a safety critical system (a system for which a failure or

design error can cause a risk to human life), is still unacceptable.

 The ground control system is managed in smaller sub-teams, referred to as

CSCIs. The CSCI that this internship focused on is responsible for monitoring the

health and status of the system. This team’s software had several

methods/modules that were leaking significant amounts of memory. Since most

Austin Pope Joseph NIFS Intern Kennedy Space Center

of the code in this system is safety-critical, correcting memory leaks is a

necessity.

III. Objectives-

The objective of the internship was to find and correct memory handling

errors. While that may seem fairly straightforward, many of the errors that were

encountered were very difficult to find and, once found, they were even more

difficult to fix without changing the function of the original code.

IV. Approach

 Ideally, the intern would pull reports from the CIS, which will include detailed

memory management error reports. The CIS provides a formatted report that

will show what kind of memory error the particular method/module is producing

as well as where the memory is being allocated and a history of where it is being

utilized. The intern would then locate the files implementing the code and study

them, looking for code that isn’t handling memory optimally. Once the code is

located, the intern would correct it, test it in the development environment,

have it peer reviewed, and finally promote it to the active development code in

the SCM. Due to the scope of possible error sources, this process can be

incredibly difficult.

 The CIS, Memory Management, and Finding Errors

 The first step is to find the memory leak. There are four common types of

 memory leaks: directly lost, indirectly lost, still reachable, and possibly lost (as

 reported by our memory management software).

Directly lost and indirectly lost are the most serious kinds of leaks. The most

common cause of these problems is the use of malloc() or new without the

corresponding use of free() or delete to deallocate the memory when it is no

longer in use. Since many methods create new objects by design it is not as

simple as deleting the object when the method goes out of scope. The function

that called for the creation of an object will produce an error when it attempts to

access the deleted object. Usually, in these cases the intern would need to

rationalize when the last time these objects were likely to be used and make

certain that the code that handles that is correctly deleting them.

Austin Pope Joseph NIFS Intern Kennedy Space Center

 The other common case for directly and indirectly lost memory leaks is when

an object is created and then, before it is used, some kind of exception or error is

thrown and the method creating the object terminates without cleaning up the

memory. To correct these it is often enough to add a control statement that

deallocates the memory on a failure state.

 Still reachable and possibly lost errors are much more difficult to track down.

While throughout the internship many of these errors were cleared up, there

was no good practice to find them methodically. The best practice seems to be:

parse through all of the code that is using the methods and all of the cursory

code that is being called in said methods and pay attention to pointer

assignment.

 Testing and Code Reviews

 The development environment has all of the tools required to build the CSCI

runtime software, their respective unit tests, and mock files (used for the unit

tests). After a memory leak has been corrected, it is important that the

corrected code still functions as it was intended and doesn’t introduce more

errors into the system.

 This can be accomplished by building the affected code locally on the

computer and running the required memory handling and unit tests. Our

memory management software puts out reports in an .xml format and while the

CIS has a good XML reader that displays this information nicely, the best way to

check these reports on a development machine is to load the report into a web

browser. To streamline the testing process I wrote a shell script that accepts a

test suite binary and outputs a ***.OUT file that can be quickly loaded into

Firefox.

 Once the code has been tested, the unit test report is clean, and the memory

error report is clean, it is time to start a code review. At this point the code

changes are checked into our code review software, the reports are uploaded,

and one or more reviewers are chosen to inspect the changes. Once the code

has been reviewed and accepted it can then be promoted to a higher branch

within the SCM.

Promotion

 This is the final step in the process. Once all of the changes have been

reviewed, the intern can now promote the code to the active development build

area in configuration management. This requires a work order that must be

created/assigned from our project tracking software.

V. Conclusion

Austin Pope Joseph NIFS Intern Kennedy Space Center

 As of November 2nd, I have been successful in reducing the number of directly

lost memory leaks by eighty-five, indirectly lost leaks by thirty-three, possibly

lost by eight and still reachable errors by twelve. In addition, I have made

considerable alterations to code in almost every single module inside the CSCI

that was assigned to me.

 The most notable code changes involved writing a daemon to handle multi-

process test cases and a signal handler to shut down the daemon safely after the

tests were concluded. This internship has increased my understanding of the

C++ language ten-fold and I have a much better grasp on the general

development of a software product.

VI. Acknowledgments

 I could not have gotten as far as I did without the help of James Hinchey. He

was an incredible help teaching me how to get the development environment up

and running on my development machine as well as an incredible resource to

ask technical questions.

 My mentor, Jamie Szafran, has always been very available to answer questions

that I have had throughout the internship. When she was unable to answer the

questions herself, she was very quick to find someone who could; namely, JJ

Serrano and Michael Reed.

