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I. Nomenclature 

 

GSDO – Ground Systems Development and Operations 

KSC – Kennedy Space Center 

COTS – Commercial Off the Shelf 

CSCI – Computer Software Configuration Item 

CIS – Continuous Integration Server 

SCM – Software Configuration Management (application) 

Mock File – Files that contain code meant to emulate methods in libraries the 

 system under test would call. 

Directly Lost (memory leak) – When the pointer to a block of allocated memory 

 goes out of scope without deallocating the memory it pointed to. 

Indirectly Lost (memory leak) – Similar to directly lost except the pointer points 

 to an object that used to be pointed at the lost memory block. 

Possibly Lost (memory leak) – The result of an interior pointer.  The memory 

 management program can’t be certain the memory was handled 

 correctly. 

malloc()/new – Methods to dynamically allocate memory in C and/or C++. 

free()/delete – Methods to deallocate dynamic memory created by 

 malloc()/new. 

 

II. Introduction 

    This internship was initially meant to cover the implementation of unit test 

automation for a NASA ground control project.  As is often the case with large 

development projects, the scope and breadth of the internship changed.  

Instead, the internship focused on finding and correcting memory leaks and 

errors as reported by a COTS software product meant to track such issues. 

    Memory leaks come in many different flavors and some of them are more 

benign than others.  On the extreme end a program might be dynamically 

allocating memory and not correctly deallocating it when it is no longer in use.  

This is called a direct memory leak and in the worst case can use all the available 

memory and crash the program.  If the leaks are small they may simply slow the 

program down which, in a safety critical system (a system for which a failure or 

design error can cause a risk to human life), is still unacceptable. 

    The ground control system is managed in smaller sub-teams, referred to as 

CSCIs.  The CSCI that this internship focused on is responsible for monitoring the 

health and status of the system.  This team’s software had several 

methods/modules that were leaking significant amounts of memory.  Since most 
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of the code in this system is safety-critical, correcting memory leaks is a 

necessity. 

  

III. Objectives- 

The objective of the internship was to find and correct memory handling 

errors.  While that may seem fairly straightforward, many of the errors that were 

encountered were very difficult to find and, once found, they were even more 

difficult to fix without changing the function of the original code. 

 

 

IV. Approach 

    Ideally, the intern would pull reports from the CIS, which will include detailed 

memory management error reports.  The CIS provides a formatted report that 

will show what kind of memory error the particular method/module is producing 

as well as where the memory is being allocated and a history of where it is being 

utilized.  The intern would then locate the files implementing the code and study 

them, looking for code that isn’t handling memory optimally.  Once the code is 

located, the intern would correct it, test it in the development environment, 

have it peer reviewed, and finally promote it to the active development code in 

the SCM.  Due to the scope of possible error sources, this process can be 

incredibly difficult. 

  The CIS, Memory Management, and Finding Errors 

      The first step is to find the memory leak.  There are four common types of 

  memory leaks:  directly lost, indirectly lost, still reachable, and possibly lost (as 

  reported by our memory management software).   

Directly lost and indirectly lost are the most serious kinds of leaks.  The most 

common cause of these problems is the use of malloc() or new without the 

corresponding use of free() or delete to deallocate the memory when it is no 

longer in use.  Since many methods create new objects by design it is not as 

simple as deleting the object when the method goes out of scope.  The function 

that called for the creation of an object will produce an error when it attempts to 

access the deleted object.  Usually, in these cases the intern would need to 

rationalize when the last time these objects were likely to be used and make 

certain that the code that handles that is correctly deleting them. 
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    The other common case for directly and indirectly lost memory leaks is when 

an object is created and then, before it is used, some kind of exception or error is 

thrown and the method creating the object terminates without cleaning up the 

memory.  To correct these it is often enough to add a control statement that 

deallocates the memory on a failure state. 

    Still reachable and possibly lost errors are much more difficult to track down.  

While throughout the internship many of these errors were cleared up, there 

was no good practice to find them methodically.  The best practice seems to be:  

parse through all of the code that is using the methods and all of the cursory 

code that is being called in said methods and pay attention to pointer 

assignment. 

  Testing and Code Reviews 

    The development environment has all of the tools required to build the CSCI 

runtime software, their respective unit tests, and mock files (used for the unit 

tests).  After a memory leak has been corrected, it is important that the 

corrected code still functions as it was intended and doesn’t introduce more 

errors into the system. 

    This can be accomplished by building the affected code locally on the 

computer and running the required memory handling and unit tests.  Our 

memory management software puts out reports in an .xml format and while the 

CIS has a good XML reader that displays this information nicely, the best way to 

check these reports on a development machine is to load the report into a web 

browser.  To streamline the testing process I wrote a shell script that accepts a 

test suite binary and outputs a ***.OUT file that can be quickly loaded into 

Firefox. 

    Once the code has been tested, the unit test report is clean, and the memory 

error report is clean, it is time to start a code review.  At this point the code 

changes are checked into our code review software, the reports are uploaded, 

and one or more reviewers are chosen to inspect the changes.  Once the code 

has been reviewed and accepted it can then be promoted to a higher branch 

within the SCM. 

Promotion 

    This is the final step in the process.  Once all of the changes have been 

reviewed, the intern can now promote the code to the active development build 

area in configuration management.  This requires a work order that must be 

created/assigned from our project tracking software. 

V. Conclusion 
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    As of November 2nd, I have been successful in reducing the number of directly 

lost memory leaks by eighty-five, indirectly lost leaks by thirty-three, possibly 

lost by eight and still reachable errors by twelve.  In addition, I have made 

considerable alterations to code in almost every single module inside the CSCI 

that was assigned to me. 

    The most notable code changes involved writing a daemon to handle multi-

process test cases and a signal handler to shut down the daemon safely after the 

tests were concluded.  This internship has increased my understanding of the 

C++ language ten-fold and I have a much better grasp on the general 

development of a software product. 
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