

Walter A. Petersen Earth Science Branch NASA MSFC, Huntsville, AL

Introduction

- NASA Global Precipitation Measurement mission Olympic (GPM) Mountain Experiment (OLYMPEX) winter of 2015-
- Ground and airborne in situ and remote sensing measurements
- NASA S-band dual-pol radar (NPOL) used to analyze evolution of hydrometeor in the OLYMPEX domain in profiles as precipitation moved from the ocean and over mountainous terrain

northwestern Washington

radiometer-based precipitation retrieval algorithms over land rely strongly on ice-scattering signals. Hence, we use NPOL to evaluate the relative contributions of ice and liquid-phase orographic precipitation processes in the vertical column to the precipitation estimated at the surface. Attention is focused on the precipitation ice and liquid water paths (IWP, LWP, respectively).

Methodology

Calculating water paths with an RHI

- RHI scans observe vertical profile of hydrometeors
- IWP and LWP defined as the integration of ice and liquid water content (IWC, LWC)

WP =
$$\int_{h_{\text{base}}}^{h_{\text{top}}} \text{IWC } dh.$$

1. Use hydrometeor ID to D Graupel types and liquid

Calculate mass content values for ice and liquid $(M_{i,w})$ respectively) reflectivity (Z) and differential reflectivity through derived OLYMPEX (ice: Heymsfield et al. 2017^{*}; liquid: 2D Video Disdrometer data)

3. Grid the newly calculated mass content variables with resolution 1000 m x 500 m (xand z-direction)

4. Integrate gridded mass values content path

12-13 November)

relationships to radar reflectivity from collocated aircraft in situ and overflying radar data and from global satellite radar measurements. J. Appl. Meteor. Climatol., accepted for publication.