

Christopher Carter

CREATING THE NEXT®

OUTLINE

- Background
- Changes made
- Results
- Difficulties faced in implementation
- Additional Improvements
- Conclusion

BACKGROUND: WHAT IS SVGS?

- Cube-sat Autonomous Rendezvous and Docking Sensor
- Cheap
- Small form factor
- Self-contained
- Low mass and energy req.

Figure 1: SVGS Concept of Operations

BACKGROUND: CHALLENGES FACED

- Target difficult to distinguish from background, especially with reflections
- Slow refresh rate, difficult to implement into a control loop

Figure #: a) Retro-reflector captured image b) Retro-reflector processed image

PROPOSED SOLUTION

- LED Targets
 - Color selectivity
- Persistent tracking
 - Less Image Processing

Figure #: LED Target captured and processed images

Figure #: Original and Proposed Modified Solution

RESULTS: TEST SCENARIO

- Target Positioned 2m from camera at a slight rotation
- Extraneous LED light source introduced to ensure plenty of reflections
- Steady-state
 measurements taken using
 the LED and retro-reflector
 targets

Figure #: Test Setup with LED and retro-reflector targets

RESULTS: RELIABILITY

- Retro-reflector target was unable to be uniquely determined
- LED target was uniquely determined by using color, despite lots of background noise

Figure #: Retro-reflector target captured and processed images

Figure #: LED target captured and processed images after successful "target lock"

RESULTS: SENSOR PROPERTIES

NASA

- The LED target allowed for much greater selection
- Targeting algorithm significantly increased speed

6DOF output state using retroreflectors

Output state using LED targets + persistent targeting algorithm

DIFFICULTIES FACED

NASA

- Colors mixed at range
- Using only color to determine regions of interest was slow and ineffective
- With an extremely dark background, the LEDs merged together

Figure #: LED target at 6m in a dark room

Figure #: a) 12 meter Image Capture and b) Resulting Blobs and Color Selection

ADDITIONAL IMPROVEMENTS

- Demonstrated the modified SVGS to close a 3DOF control loop using the robust targeting system
- Demonstrated ability to find the target at very high refresh rates even while the relative position was changing rapidly

Figure #: 6DOF scatterplot during rapid changes in all 6DOF

CONCLUSION

- The proposed solution was effective
 - Increased speed by 3x by retaining previous state, 10x through combination of various factors
 - Increased reliability and the sensor's ability to choose the correct target
- Target should be mono-chromatic to increase sensor range
- The sensor needs a more thorough test of accuracy to be fully characterized
- The sensor is ready to prove its capability in a 6 DOF test rendezvous and docking simulation

ACKNOWLEDGEMENTS

 John Rakoczy, Chris Becker, Ivan Bertaska, Marshall Space Flight Center