Forbidden mass ranges for shower meteoroids

Althea Moorhead NASA Meteoroid Environment Office, MSFC

49th Annual Division for Planetary Sciences Meeting October 16, 2017

Eccentric comets approach v_{esc} at perihelion

Small particles are subject to radiation pressure

- Radiation pressure follows inverse square law
- ▶ Reduces central potential by β :

$$\beta = \frac{F_r}{F_g}$$

Effect is inversely proportional to size (and density):

$$\beta \propto 1/s$$

Meteoroids can be ejected directly onto escape trajectories

$$v_{esc}^2 = \mu (1 - \beta) \frac{2}{q}$$

- ▶ For $\beta \ge 1$, there are no bound orbits
- For $\beta < 1$, v_{esc} is reduced
- ► Comet's velocity alone exceeds *v_{esc}* for:

$$\beta > \frac{1-e}{2}$$

Burns, Lamy, & Soter (1979)

Ejection speed can give meteoroids a boost

- Meteoroids ejected in the direction of the comet's motion get a boost; trailing particles the opposite.
- ► For large particles:

$$\Delta v = v_0 \sqrt{\beta}$$

(Whipple, 1951; Jones, 1995; etc.)

▶ The value of β above which particles are unbound has an analytical solution. For leading particles:

$$y = \sin^{-1}\left(rac{v_{peri}}{\sqrt{v_0^2 + v_{esc}^2}}
ight) - atan2(v_{esc}, v_0)$$
 $eta_I = \sin^2 v$

A similar equation exists for trailing particles

Calculating β

▶ The only thing left to do is calculate β :

$$\beta = 5.7 \times 10^{-4} \text{ kg m}^{-2} \times (Q_{pr}/\rho s)$$

- Geometric optics: $Q_{pr} = 1$
- But there are some complications ...

What about small particles?

For small particles:

$$\Delta v \propto \sqrt{\beta}$$

▶ Instead, we must numerically integrate (see Jones, 1995):

$$\frac{d^2x}{dt^2} = \frac{A\Gamma}{2}m^{-1/3}\rho_d^{-2/3}\rho_{gas}(x)\left[v_{gas}(x) - \frac{dx}{dt}\right]^2$$

► Then:

$$\Delta v = \left. \frac{dx}{dt} \right|_{t \to \infty}$$

What about small particles?

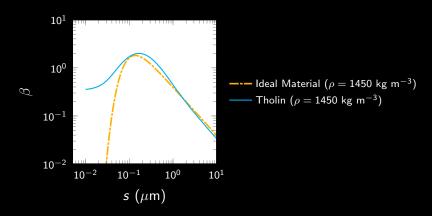
 $ightharpoonup \Delta v$ has no analytic form, but is very close to:

$$\Delta v \simeq v_{gas,0} \left(0.38532 + 0.50341 \cdot \xi^{-1.054} \right)^{-0.949}$$

$$\xi = \frac{A\Gamma}{2} m^{-1/3} \rho_d^{-2/3} \rho_{gas,0} \ x_c$$

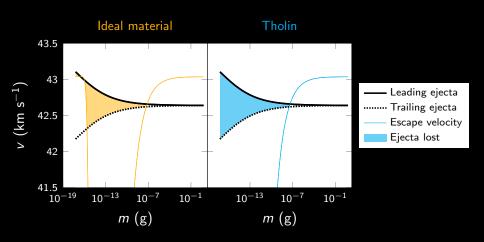
Ugly, but easy to code up.

lacktriangle Calculating eta is another matter.

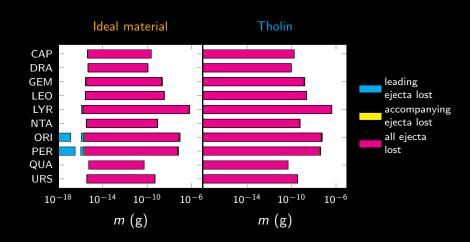

Calculating β for small particles and real materials

$$\beta = 5.7 \times 10^{-4} \text{ kg m}^{-2} \times (Q_{pr}/\rho s)$$

- Geometric optics: $Q_{pr}=1$
- "Ideal material": $Q_{pr} = 1$ for $\lambda < 2\pi s$, 0 otherwise
- ▶ Real materials: Calculate Q_{pr} using Mie theory (Python code available from Navarro & Werts, 2012)



Calculating β for real materials



- ▶ I'll compare the "ideal material" case with one real material
- ▶ Tholins are a reddish brown polymer found on icy bodies

Perseids

Forbidden mass ranges for 10 major showers

Summary

- Small meteoroids originating from eccentric comets may be on unbound orbits. We've extended this to handle the ejection velocity imparted by the sublimation process:
 - Analytic solution for β limit for large particles
 - ▶ Semi-numerical solution for Δv (and thus β limit) for all particles
 - $lackbox{New } \Delta v$ equation also useful for stream modeling
- \blacktriangleright We've calculated β for small particles/real materials.
 - ▶ Ideal material: very small particles may remain in stream
 - ► Tholins: small particles do not remain in stream
- ▶ Large comets: some small particles can still be ejected
- ▶ Eccentric comets: excluded range can be large: no Lyrids smaller than 4×10^{-7} g