

A NEW CAPABILITY FOR DISCOVERY

Steve Creech NASA Space Launch System October 13, 2017

....4....3....2....1....

SLS CAPABILITY AVAILABILITY

SLS Block 1 As Early As 2019	SLS Block 1B Crew As Early As 2022		ck 1B Cargo / As 2022		SLS Block 2 As Early As 2028
Provides	Provides	Provide	<u>s</u>		<u>Provides</u>
Initial Heavy-Lift Capability	105 t lift capability via Exploration Upper Stage		ter fairings for payloads		130 t lift capability via advanced boosters
	Co-manifested payload capability in Universal Stage Adapter				10-meter fairings for primary payloads
<u>Enables</u>	<u>Enables</u>	Enables			<u>Enables</u>
Orion Test	Deep Space Gateway	Europa Clipper,	/Lander		Crewed Mars Orbit Missions
SmallSats to Deep Space	Larger CubeSat- and ESPA-Class Payloads	Deep Sp Transpo	ort		Crewed Mars Surface Missions
		Ice or C Worlds I			
			Aperture Telescopes		
				(3-3)	

ì

5

- Int

SLS

2020s

CREATING ECONOMIC OPPORTUNITIES, ADVANCING TECHNOLOGIES, AND ENABLING DISCOVERY

Leaving the Earth-Moon System and Reaching Mars Orbit

After 2030

Phase 0

Now Using the International **Space Station**

> Continue research and testing on ISS to solve exploration challenges. **Evaluate potential for** lunar resources. Develop standards.

Phase 1

Begin missions in cislunar space. Build Deep Space Gateway. Initiate assembly of **Deep Space Transport.** Phase 2

Complete Deep Space Transport and conduct yearlong Mars simulation mission.

Phases 3 and 4

Begin sustained crew expeditions to Martian system and surface of Mars.

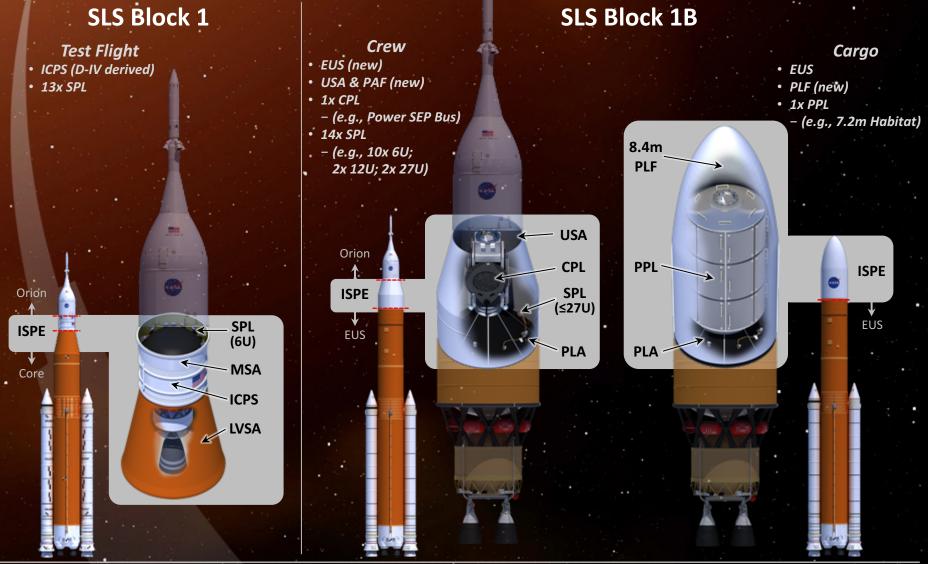
A PHASED APPROACH TO HUMAN SPACEFLIGHT SLS PLAYS A KEY ROLE INTO THE 2030s

0368.3

BOOSTER PROGRESS

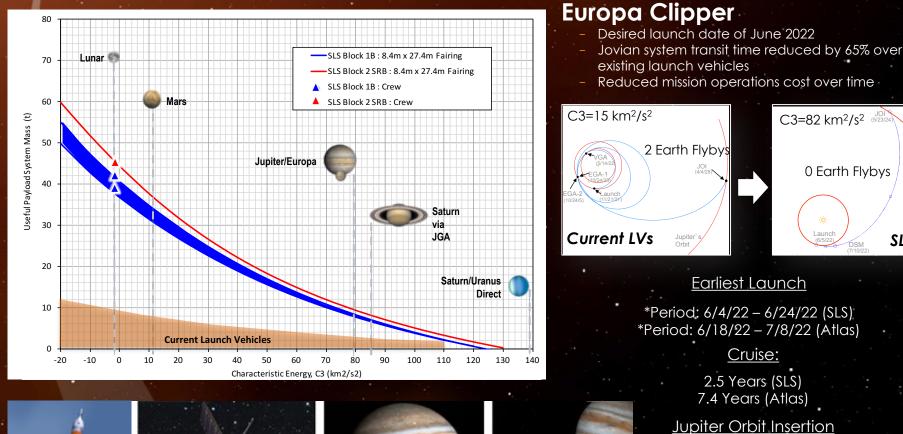
CORE STAGE PROGRESS

ENGINE PROGRESS


IN-SPACE STAGE AND ADAPTER PROGRESS

SLS SPACECRAFT/PAYLOAD INTEGRATION & EVOLUTION (SPIE)

ISPE HARDWARE DEVELOPMENT & PAYLOAD INTEGRATION FOR SLS MISSIONS



Notes: ISPE – Integrated Spacecraft Payload Element SPL – Secondary Payload MSA– MPCV Stage Adapter ICPS – Integrated Cryogenic Propulsion Stage LVSA – Launch Vehicle Stage Adapter EUS – Exploration Upper Stage USA – Universal Stage Adapter CPL – Co-manifested Payload PLA – Payload Adapter PLF - Payload Fairing PPL – Primary Payload SLS

ISPE Separation Plane

www.nasa.gov/sls

SLS TIME TO DESTINATION

12/24/24 or 5/1/25 (SLS) 11/26/29 (Atlas) Jovian System Operations

Prime Europa Flyby Campaign: 36 months

0 Earth Flybys

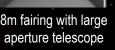
SLS

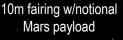
Launch

SLS PAYLOAD VOLUME

FAIRING AVAILABILITY

Potential opportunities exist for launch of a 5m fairing on the Block 1 configuration of SLS

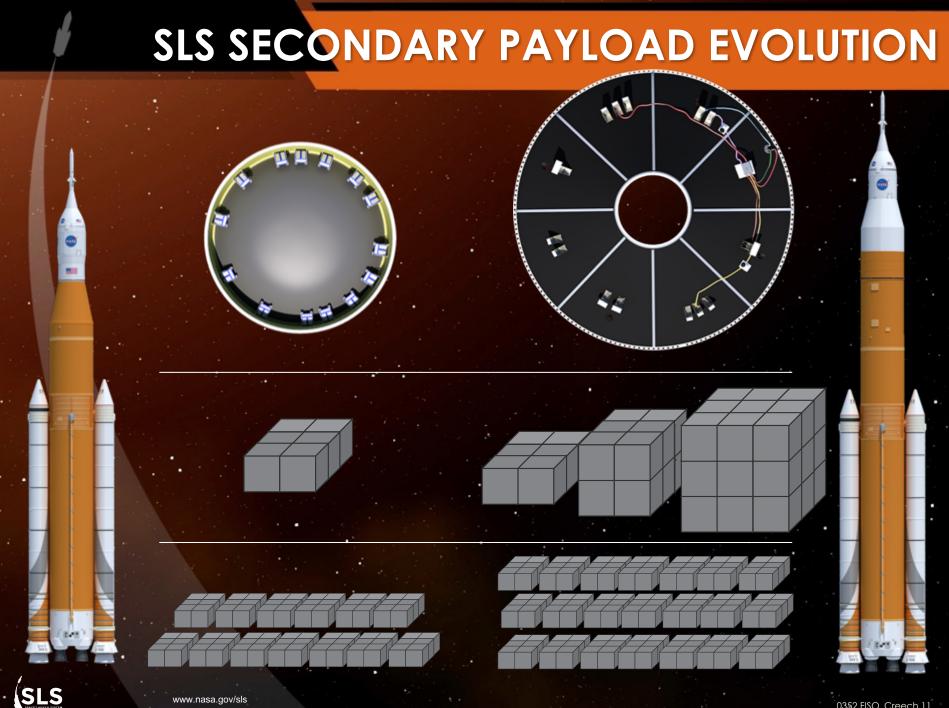

Universal Stage Adapter offers opportunity for co-manifested payloads with Orion spacecraft or near-term 8.4-meter lower-height accommodations


Universal Stage Adapter accommodations early as soon as second flight of SLS; 8.4- and 10-meter fairings available as needed.

Orion with shortduration hab module 8m fairing with large

ΝΔЛ

total mission volume = ~


250m3

400m3

400m3

1.200m3

1.800m3

www.nasa.gov/sls

0352 FISO Creech.11

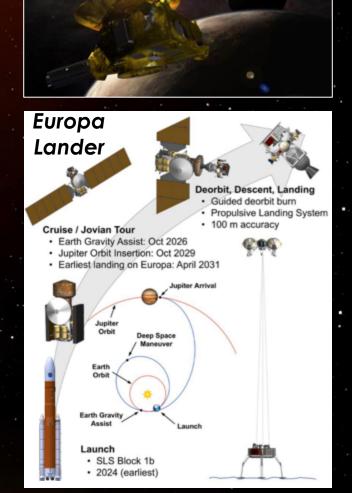
SLS MASS TO DESTINATION

New Horizons

Up to 5 times greater mass to orbit capability than current launch systems

- Increases payload mass margins
- Offers range of injection propulsion options

New Horizons


 SLS would have doubled delivered payload mass to Pluto

Europa Lander

16 mT delivery to outer planets (with margin)

THE ADVENTURE BEGINS NOW.

