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Introduction

Finally, the risk implications of uncertainty estimation are summarized in a 
convenient reference card: Uncertainty Estimation Cheat Sheet.
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When uncertainty estimates are expected to inform decision-makers, it is especially 
important to carefully consider, understand, and communicate the significance of 
the statistical parameters used in the characterization of failure probability 
distributions.

We will illustrate key principles as we step through the quantification of 
uncertainty. 

Uncertainty analysis aims to make a technical contribution to decision-making 
through the quantification of uncertainties in the relevant variables as well as 
through the propagation of these uncertainties up to the result.



Probability Distributions

• Informally, a probability distribution is a mathematical function that assigns 
probabilities to each element of the sample space (the set of all possible 
outcomes in an experiment).

• A random variable is a function that maps outcomes of an experiment to 
numerical quantities. 

• For a continuous distribution, the probability density function (pdf) is the 
function that is used to generate the probability that a random variable X
lies within an interval [a, b]:

Pr 𝑎 ≤ 𝑿 ≤ 𝑏 =  

𝑎

𝑏

𝑓(𝑥) 𝑑𝑥
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Probability Distributions

• The probability density of the exponential distribution is:

𝑓 𝑡 =  𝜆𝑒
−𝜆𝑡, 𝑡 ≥ 0
0, 𝑡 < 0

• The pdf of the normal (or Gaussian) distribution is:

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

• The pdf of the lognormal distribution parameterized with the mean (µ) 
and standard deviation (σ) of the underlying normal distribution is given 
as:

𝑓 𝜆 =
1

𝜆𝜎 2𝜋
exp −

ln 𝜆 − µ 2

2𝜎2
, 0 < 𝜆 < ∞
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Central Tendency

• For a continuous distributions, the arithmetic mean is: 

𝐸 𝑿 =  𝑥𝑓 𝑥 𝑑𝑥,

where the weighting function f(x) is the pdf of X.

• The median or 50th percentile is the midpoint where half of the probability 
(area under the pdf) lies to either side.

 

−∞

𝑚𝑒𝑑𝑖𝑎𝑛

𝑓 𝑥 𝑑𝑥 =  

𝑚𝑒𝑑𝑖𝑎𝑛

∞

𝑓 𝑥 𝑑𝑥 =
1

2

• The mode is a local maximum or peak of the pdf. 
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Dispersion

• The variance is the expected value of the squared deviations about the 
mean:

𝑉𝑎𝑟 𝑿 = 𝐸[ 𝑿 − 𝐸 𝑿 2]

• The square root of the variance is the standard deviation:

𝜎 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

• The error factor (EF) is defined as the square root of the 95th percentile 
divided by the 5th percentile. Equivalently, the EF is equal to the 50th divided 
by the 5th and the 95th divided by the 50th as summarized in the following 
equivalence: 

𝐸𝐹 =
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

5𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
=

95𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

50𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
=

50𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

5𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
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• Component failure rates (λ) are not physical quantities; that is, they cannot 
be measured directly but must be inferred.

• Previous research evaluated different distributions to represent the 
uncertainty of the parameter λ [1]. They found the lognormal distribution 
was appropriate for simple components with a single failure mode. 

• Uncertainty has many sources in addition to variation among individuals 
within a population and lack knowledge due to sparse data. However, this 
paper examines the implications of applying uncertainty around central 
tendency estimates in order to quantify degree of belief – in particular when 
expressing degree of belief via the shape of the lognormal pdf.
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Failure Rate Uncertainty
Background Material



• Application of classical life data analysis requires component data in the 
form of failures and exposure time or number of demands. 

• Highly reliable components produced in small quantities, such as in space 
applications, do not have enough operating time and failure history to yield 
useful confidence bounds using classical statistical data analysis 

• Bayesian approach is able to address the challenges described above 
because it admits prior experience into the estimation procedure in the form 
of a prior degree of belief about the likely values of the component in the 
form of a prior distribution.

• In our experience, engineers with specific discipline expertise are generally 
familiar with the normal probability distribution, but have little direct 
experience with skewed distributions, such as the lognormal.

• Subject matter experts who often assist PRA analysts in the 
quantification of the prior failure rate distribution must be educated to 
develop an intuitive understanding of how the lognormal distribution 
morphs as its centrality and dispersion measures are varied.
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The Bayesian Approach



Parameter As a function of µ and σ

Mean exp µ +
𝜎2

2

Median exp µ

Mode exp µ − 𝜎2

Standard Deviation exp 𝜎2 − 1 exp 2µ + 𝜎2

Error Factor exp 1.64485𝜎
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The Bayesian Approach

One of the main purposes of this paper is to illustrate with specific examples 

the effects of varying one of the parameters, such as the dispersion while 

holding another fixed to show the effect on the remaining parameters. 

Specifying any two parameter values 

completely specifies the lognormal distribution. 

Thus we can solve for µ and σ and then fill in 

the remaining parameter values in the table 

using the formulas.
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Uncertainty Estimation Examples

• By fixing each of the mode, mean and median, 
while varying the error factor, we demonstrate 
the effect on the other measures of centrality 
as well as the risk implications to results via 
uncertainty propagation.



12

Uncertainty Estimation Example 1

• We begin with an 
engineering judgment 
prior example. What 
is given is a single 
central value for 
lambda and an 
estimate for the error 
factor.
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Uncertainty Estimation Example 2

• Next we will examine the 
development of a prior by 
similarity. This begins with 
a given distribution: 
lognormal(mean = 50, EF 
= 3) as our base case. We 
calculate the median and 
mode from the base case, 
then fix each of the mean, 
mode and median while 
increasing the error factor 
from 3 to 9.

Listed below are the features of 
the boxplots in the following 
slide
• The box represents the IQR.
• Thick bar through the middle 
of the box is the Median.
• Respectively, the low and 
upper whiskers are located at Q1 
– 1.5 * IRQ and Q3 + 1.5 * IRQ.
• Solid square symbols are the 
5th and 95th percentiles.
• Circle is the mode.
• Triangle is the mean.
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Uncertainty Estimation Example 2

Several observations are apparent:

1. The mean value moves from the 63rd percentile to the

75th percentile as the error factor increases from 3 to 9.

2. The mode moves from the 25th percentile to the 9th

percentile as the error factor is increased from 3 to 9.

3. The 95th percentile moves above the upper whisker as

the error factor moves from 3 to 9.

4. Fixing the mean lowers the 75th percentile and the

median while stretching the 4th quartile to the left and

right.

5. Fixing the median lowers the 25th percentile, the mode

and the 5th percentile. The mean, the 75th percentile

and the 95th percentile are increased, as well.

Fixing the mode increases the percentiles from the 5th on 

up as well as increasing the mean.
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Uncertainty Estimation Example 3

These results demonstrate that the effects on

risk-informed decisions by the mere choice of

the central parameter about which

uncertainty is estimated can, in fact, be

pivotal.

In this example we compare a highly reliable

heritage zero failure tolerant design with a

retrofitted redundant option is not only

susceptible to common cause failaure modes

where each leg of redundancy is considered

less reliable than the heritage design.
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Uncertainty Estimation Cheat Sheet

The purpose of the cheat sheet is to reinforce 
an understanding of the cause and effect 
relationships between the adjusting of 
parameters (that measure centrality and 
dispersion) and their risk implications 
throughout the churning of the Bayesian 
approach. 

Fixed Risk

Mean Lower

Median Neutral

Mode Higher

Fixed Risk

Mean Higher

Median Neutral

Mode Lower

Uncertainty Increased

Uncertainty Decreased
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Conclusion

• Although many cases are presented, the typical case for aerospace PRA is to 
increase uncertainty while fixing a central value.

• It is often the case and without strong rationale, the parameter chosen to be 
fixed is the mean.

• Theoretical distributions do not always behave intuitively. Care must be 
taken when adjusting the parameters of a distribution as part of a heuristic 
or other method.

• One ought to understand the relationships and effects of all relevant 
parameters as well as the risk implications.

• It is our hope that the Uncertainty Estimation Cheat Sheet (for Lognormal 
Uncertainty) will help those involved in the PRA process (such as managers, 
subject matter experts and PRA analysts) make effective technical 
contributions to decision-making.



Questions?

POC: Paul T. Britton

Paul.t.britton@nasa.gov

Office: +1-256-544-8301
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