Material Analysis and System Design for Exploration Life Support Systems

Introduction to ECLSS Air Revitalization Support for Exploration Missions

Gregory E Cmarik, Jacobs ESSSA, MSFC Jim Knox, ES62/MSFC National Aeronautics and Space Administration

MARSHALL SPACE FLIGHT CENTER

Life Support requires many continuous separation systems

- Waste
- Water
- Air
 - American CDRA systems

Accomplished today with a Russian Vozdukh and two

- CDRA is the flight version of a 4BMS system
 - 4-Bed Molecular Sieve
 - Cyclic operation

- Cabin Air Out Humid Air
- Separate CO₂ out of humid cabin air High purity product

CDRA is now at iteration 5 due to...

<u>DUST</u>

- Many failures
- Many identified possible causes

• Re-design required

- Bring the process in house (ES62)
- Mitigate and avoid all causes of dust

Identifying causes and solutions

– A few directly attributable failures:

- Dust in valve => valve jamming/leaking ullet
- Dust on screen => flow blockage lacksquare
- Sheet heater delamination => heater short/failure ullet

Dozens of potential failure causes:

- Large air velocity and pressure transients ullet
- Uncompacted voids which allow for free-floating particles and attrition ullet
- Thermal and moisture induced degradation of sorbents ullet
- lacksquare
- Operator error due to difficult assembly of system ullet

Final Goal is reliable operation for <u>4 crew</u> for 3 years.

Operating at the thermal limits of various components such as heater sheets and O-rings

Full redesign of components for the future 4BMS Retain tested and proven operating architecture of CDRA Provide remedies for each known and suspected failure

New components in build

Original flight-like test beds in 4BMS test stand

Target flight-like configuration

What goes into the decision process?

Sorbent selection

Material Type	Sorbent Name	Use/Potential Use	Form Factor	Pore size	Notes
Silica Gel	Grace Grade 40	Bulk Desiccant	Granular	Microporous	used in CDRA
Silica Gel	Grace SG B125	Bulk Desiccant	Beads	Microporous	used in CDRA
Silica Gel	BASF Sorbead H	Bulk Desiccant	Beads	Microporous	
Silica Gel	BASF Sorbead R	Bulk Desiccant	Beads	Microporous	
Alumino-Silica Gel	BASF Sorbead WS	Guard Layer	Beads	Microporous	Misting Stable used in CDRA
Activated Alumina	BASF F200	Bulk Desiccant	Beads	Mesoporous	Misting Stable
Molecular Sieve	UOP ASRT 1995 and ASRT 2005	CO ₂ sorbent	Pellets	5Å	CaA Zeolite, used in CDRA
Molecular Sieve	UOP RK-38	CO ₂ sorbent	Beads	5Å	CaA Zeolite, used in CDRA
Molecular Sieve	Grace MS 564	Residual Desiccant	Beads	3Å	KA Zeolite
Molecular Sieve	Grace MS 514	Residual Desiccant	Beads	4Å	NaA Zeolite
Molecular Sieve	UOP UI-94	Residual Desiccant	Pellets	4Å	NaA Zeolite
Molecular Sieve	Grace MS 522	CO ₂ sorbent	Beads	5Å	CaA Zeolite
Molecular Sieve	Grace MS 544	CO ₂ sorbent, Residual Desiccant	Beads	10Å	NaX Zeolite, used in CDRA
Molecular Sieve	BASF 5A	CO ₂ sorbent	Beads	5Å	CaA Zeolite
Molecular Sieve	BASF 5A BF	CO ₂ sorbent	Binder-free Beads	5Å	CaA Zeolite
Molecular Sieve	BASF 13X	CO ₂ sorbent, Residual Desiccant	Beads	10Å	NaX Zeolite
Molecular Sieve	BASF 13X BF	CO ₂ sorbent	Binder-free Beads	10Å	NaX Zeolite
Molecular Sieve	UOP APGIII	CO ₂ sorbent	Beads	10Å	NaX Zeolite
Molecular Sieve	UOP VSA-10	CO ₂ sorbent	Beads	10Å	LiLSX Zeolite
Molecular Sieve	Tosoh NSA-700	CO ₂ sorbent	Pellets	10Å	LiLSX Zeolite

System sizing

Heater core redesign and optimization

Design to address problems at transitions

What goes into the decision process?

– Sorbent selection

 System sizing Heater core redesign and optimization Design to address problems at transitions

Sorbent Robustness

– Target: Outperform current material (ASRT)

ullet

Summary of Attrition Tests on Candidate

Two candidates considered from here out are 544 13X and BASF 13X

Sorbent Hydrothermal Stability

..... Linear (A1 544) Linear (A2 VSA-10) ······ Linear (A3 APG-III) ····· Linear (A5 544) Linear (A6 VSA-10) Linear (A7 APG-III)

Target: Minimize filter clogging over time (rising ΔP) Grade 544 13X and BASF 13X perform well ullet

Performance Recovery Off-nominal events may include water ingestion into

CO₂ sorbent bed

is required to block entire bed

• Water blocks CO₂ removal performance, though lots of water

What goes into the decision process?

 Sorbent selection – System sizing Heater core redesign and optimization Design to address problems at transitions

Sorbent Capacity and Performance

Capacity for CO₂ and water

- Across full temperature and pressure range
- Input to models

Mixture isotherms

- Simulation refinement
 - Could optimize system size by 20%

• Redesign is well underway in ES62 - System capable of scrubbing CO2 for 4 crew Maintain the newest medical recommendation of 2 torr CO2 Retain proven, high TRL operating architecture Mitigate dust at every turn

Conclusions

