

National Aeronautics and Space Administration

- Marshall Space Flight Center (MSFC)
- Space Launch System (SLS)
- RS-25 Engine
- Castings in RS-25
- Turbopump castings
- Advanced Casting Technology
- Casting Quality Considerations
- Casting Trends and Outlook

Team Redstone

Marshall Space Flight Center

State of Alabama

\$3.8B economic impact FY15 **Employment impact more than** 20,000 jobs

2nd largest employer

Huntsville / Madison County

Nationwide impact of more than

38,000 jobs

Fueling the Economy

- 1. Lead the way into markets that do not yet exist
- 2. Enable new markets through exploration focus beyond LEO
- 3. Stay focused on being a DDT&E Center
- 4. Emphasis on science as it enables exploration

Marshall's Path Forward

Space Launch System

The **only** vehicle capable of sending humans to deep space **and** the large systems necessary for human exploration

Space Launch System

RS-25 Engine

- Oxygen/Hydrogen Engine staged combustion cycle
- Each turbine blade powering the RS-25's high pressure fuel turbopump produces more than a Corvette ZR1's 638 horsepower, and its airfoil is the size of a quarter.
- Pressure within the RS-25 is equivalent to an ocean depth of three miles – about the same distance where Titanic lies below the surface of the Atlantic Ocean.
- The combustion chamber reaches +6,000 degrees F. -hotter than the boiling point of iron.
- The space shuttle's three main engines operated for 8 minutes and 40 seconds for each shuttle flight, with a combined output of 37 million horsepower.
- Four RS-25 engines power the SLS Core Stage

RS-25 - Technical Data

	Propellants	O2/H2
	Rated power level (RPL)	469,448 lb
	Nominal power level (104.5% RPL)	490,847 lb
	Full power level (109% RPL)	512,271 lb
	Chamber pressure (109% RPL)	2,994 psia
14 A	Specific impulse at altitude	452 sec
	Throttle range (% RPL)	67 to 109
	Gimbal range	+/- 11°
	Weight	7,748 lb
	Service life	55 flights 27,000 sec
7.5 ft	Total program hot-fire time	3,171 starts 1,095,677 sec

RS-25 Flight History 30 years of Space Shuttle – 135 flights

RS-25 Simplified Flow Schematic

RS-25 Powerhead

Turbopumps

HPFTP (High Pressure Fuel Turbopump)

HPOTP (High Pressure Oxidizer Turbopump)

Why Castings?

- Castings are critical for current and future engine designs
- Castings improve producibility best option for several components
- RS-25 Liquid Engine relies on advanced casting technology
- Block changes to RS 25 included implementation of precision castings
 - Reduced number of welds
 - Reduced part count
 - Near net shape parts
 - Increased reliability
- RS-25 Selected as the Core Stage Engine for SLS
 - First Iteration Castings Complete for Production Re-start Contract
 - Opportunity for Incorporating Lessons Learned

Castings in RS-25 Engine

Castparts in RS-25 Engine		
Component	Castparts	Alloy
НРОТР	Main pump housing inlet and	
	discharge volutes	Ni-base superalloy
	Turbine inlet housing	Ni-base superalloy
	Turbine vanes	Ni-base superalloy
	Turbine blades	PWA alloy - SC
	Turnaround duct	Ni-base superalloy
HPFTP	Pump inlet housing	Ni-base superalloy
	Pump discharge housing	Ni-base superalloy
	Diffusers	Al alloy
	Turbine inlet housing	Ni-base superalloy
	Turbine vanes	PWA alloy
	Turbine blades	PWA alloy - SC
LPFTP	Housing	Al alloy
	Manifold	Ni-base superalloy
LPOTP	Housing	Al alloy
Powerhead	Heat exchanger turning vanes	Ni-base alloy

Turbopump Castings - Schematic

HPFTP HPOTP

Turbopump Castings - Examples

Advanced Casting Technology

- Fine grain precision casting technology
 - ASTM 3-5 grain size
 - Used for making Housing and Turbine Inlet Castings
 - 293 Welds Eliminated on the High Pressure Oxidizer Turbopump
 - No Welds on the High Pressure Fuel Turbopump
 - Consistent Properties, Chemistry, and Precipitate Morphology
 - Near net shape, complex geometry castings
 - Lean Process
 - NASA, Engine Contractor, Casting Supplier Collaboration
 - Chill Approach to Developing Aluminum Sand Casting Mechanical Properties
- Investment Casting of Single Crystal Blades and Vanes
 - Airfoil properties are the limiter for high temperature turbine environments
 - Tensile
 - Thermal shock
 - High- and low- cycle fatigue
 - Hydrogen embrittlement
 - Grain boundaries contain undesirable features or defects
 - Act as crack starters
 - Require grain boundary strengtheners that are otherwise undesirable
 - Incipient melting at operating temperature

Casting Quality Considerations

- Aerospace castings tend to be the highest quality castings in the industry
 - Quality is driven by requirements in design, functionality, reliability and safety
 - Cost is always an important factor
 - Cast parts must meet NASA design and construction standards: NASA-STD-6016 (Materials), -5009 (NDE) -5012 (Structures), -5019 (Fracture Control)
- Casting qualification is rigorous and involves several steps
 - Master heat requirements: single furnace charge, vacuum Melted
 - Demonstration Units help to develop process details
 - Qualification unit for first article cut-up verification of part
- Quality requirements are specified on purchase order
 - Nondestructive Testing Requirements X-ray, dye penetrant, ultrasonics, etc.
 - Mechanical properties from specimens cut from castings: tensile, stress-rupture, fracture
 - Microstructure grain size, undesirable phase/microstructural limits
 - Periodic cut-ups every certain number of units
- Structural test followed by penetrant inspection

Castings Trends and Outlook

- Casting foundry material much cleaner than 15-20 years ago
 - Electron beam cold hearth refinement not needed
 - Bottom-feed and ceramic filters effective
 - Allows use of revert
 - Master heat w/revert must meet all specification requirements
 - Mechanical properties not affected
- NASA-STD-5009 is tailorable to use best technique for reliable flaw detection
 - Sonic shear wave, digital radiography, industry NDT
 - Thermal etch to expose flaws
 - First article frequency
 - Relaxed from one-year to two-year requirement
 - Chemistry, grain size, mechanical property requirements verified
 - Porosity allowance
- Weld Repair Without Re-HIP
 - Better properties in weld: tensile, LCF, HCF, microstructure
- Unlimited Weld Repair
 - Volume, spacing, quantity, post weld HIP
 - Weld Procedures match supplier's
- Allow as-cast surface finish if structurally acceptable

Acknowledgements

- Robert Lambdin
- SLS Liquid Engine Office
- OSAC Marcia Cobun