



# MIL-HDBK-338: Environmental Conversion Table Correction

November 2017

Frank Hark, QD35, Bastion Technologies Incorporated Steven Novack, QD35, Bastion Technologies Incorporated



### Introduction



- In reliability analysis, especially for launch vehicles, limited data is frequently a problem
- Component data from other environments must be used
- MIL-HBK-338 has a matrix showing the conversation between environments
  - Due to round off the conversions are not commutative, converting from A to B will not equal converting from B to A





- Introduction to environment conversions
- Original table
- Original table with edits
- How big is the problem?
- First attempt at correction
- Proposed solution
- Summary





- The Reliability Analysis Center (RAC) is chartered by the DoD to collect, analyze, and disseminate data and information.
- The RAC publishes reliability information in the Electric Parts Reliability Data (EPRD) and the Non-electric Parts Reliability Data (NPRD) Reports
- Each failure rate is defined by an environment
- 1. Gb= Ground Benign
- 2. Gf= Ground Fixed
- 3. Gm= Ground Mobile
- 4. Ns= Naval Sheltered
- 5. Nu= Naval Unsheltered
- 6. Aic= Airborne Inhabited Cargo
- 7. Aif= Airborne Inhabited Fighter
- 8. Auc= Airborne Uninhabited Cargo
- 9. Auf= Airborne Uninhabited Fighter
- 10. Arw= Airborne Rotary Wing
- 11. Sf= Space Flight





### • From page 803 of MIL-HDBK-338B

#### TABLE 10.3-3: ENVIRONMENTAL CONVERSION FACTORS (MULTIPLY SERIES MTBF BY)

|             | To Environment            |      |     |     |     |     |     |     |     |     |     |                           |  |
|-------------|---------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------------|--|
|             | GB                        | GF   | GM  | NS  | Ντ  | J A | IC  | AIF | AUC | AUF | ARW | $\mathbf{s}_{\mathbf{F}}$ |  |
|             | GB                        | x    | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 1.2                       |  |
|             | GF                        | 1.9  | x   | 0.4 | 0.6 | 0.3 | 0.6 | 0.4 | 0.2 | 0.1 | 0.2 | 2.2                       |  |
|             | G <sub>M</sub>            | 4.6  | 2.5 | х   | 1.4 | 0.7 | 1.4 | 0.9 | 0.6 | 0.3 | 0.5 | 5.4                       |  |
| From        | $\mathbf{N}_{\mathbf{S}}$ | 3.3  | 1.8 | 0.7 | x   | 0.5 | 1.0 | 0.7 | 0.4 | 0.2 | 0.3 | 3.8                       |  |
| Environment | $\mathbf{N}_{\mathbf{U}}$ | 7.2  | 3.9 | 1.6 | 2.2 | х   | 2.2 | 1.4 | 0.9 | 0.5 | 0.7 | 8.3                       |  |
|             | AIC                       | 3.3  | 1.8 | 0.7 | 1.0 | 0.5 | x   | 0.7 | 0.4 | 0.2 | 0.3 | 3.9                       |  |
|             | AIF                       | 5.0  | 2.7 | 1.1 | 1.5 | 0.7 | 1.5 | x   | 0.6 | 0.4 | 0.5 | 5.8                       |  |
|             | AUC                       | 8.2  | 4.4 | 1.8 | 2.5 | 1.2 | 2.5 | 1.6 | x   | 0.6 | 0.8 | 9.5                       |  |
|             | AUF                       | 14.1 | 7.6 | 3.1 | 4.4 | 2.0 | 4.2 | 2.8 | 1.7 | x   | 1.4 | 16.4                      |  |
|             | A <sub>RW</sub>           | 10.2 | 5.5 | 2.2 | 3.2 | 1.4 | 3.1 | 2.1 | 1.3 | 0.7 | x   | 11.9                      |  |
|             | $\mathbf{s_F}$            | 0.9  | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | х                         |  |

Environmental Factors as Defined in MIL-HDBK-217





- This table should provide reciprocal answers
  - Sf to Gb conversion = SfGb \* MTBF = (0.9 \*1,000) to 1 in 900
  - Gb to Sf = GbSf \*MTBF= (1.2\*900) to 1 in 1,080
- Which one is correct?
  - Should it be SfGb= 0.9 and GbSf= 1/.9 or 1.1111
  - Or SfGb= 1/1.2 = .8333 and GbSf

|     | Gb   | Gf  | Gm  | Ns  | Nu  | Aic | Aif | Auc | Auf | Arw | Sf   |
|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Gb  |      | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 1.2  |
| Gf  | 1.9  |     | 0.4 | 0.6 | 0.3 | 0.6 | 0.4 | 0.2 | 0.1 | 0.2 | 2.2  |
| Gm  | 4.6  | 2.5 |     | 1.4 | 0.7 | 1.4 | 0.9 | 0.6 | 0.3 | 0.5 | 5.4  |
| Ns  | 3.3  | 1.8 | 0.7 |     | 0.5 | 1   | 0.7 | 0.4 | 0.2 | 0.3 | 3.8  |
| Nu  | 7.2  | 3.9 | 1.6 | 2.2 |     | 2.2 | 1.4 | 0.9 | 0.5 | 0.7 | 8.3  |
| Aic | 3.3  | 1.8 | 0.7 | 1   | 0.5 |     | 0.7 | 0.4 | 0.2 | 0.3 | 3.9  |
| Aif | 5    | 2.7 | 1.1 | 1.5 | 0.7 | 1.5 |     | 0.6 | 0.4 | 0.5 | 5.8  |
| Auc | 8.2  | 4.4 | 1.8 | 2.5 | 1.2 | 2.5 | 1.6 |     | 0.6 | 0.8 | 9.5  |
| Auf | 14.1 | 7.6 | 3.1 | 4.4 | 2   | 4.2 | 2.8 | 1.7 |     | 1.4 | 16.4 |
| Arw | 10.2 | 5.5 | 2.2 | 3.2 | 1.4 | 3.1 | 2.1 | 1.3 | 0.7 |     | 11.9 |
| Sf  | 0.9  | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |      |



## How Big is This Problem?



- Let's continue with the same example as before, so if SfGb is 0.9 then GbSf should be 1.1111 not 1.2 therefore percent error is 7.4% off
- The table below shows the extent of the problem by fixing the lower half and then comparing the percent difference with the original table with:
  - 0-2% is green
  - 2-5% is yellow
  - >5% is red
- Maximum error is 39%! The average is ~9%

|     | Gb | Gf   | Gm   | Ns   | Nu    | Aic  | Aif  | Auc   | Auf   | Arw  | Sf    |
|-----|----|------|------|------|-------|------|------|-------|-------|------|-------|
| Gb  |    | 5.3% | 8.7% | 1.0% | 38.9% | 1.0% | 0.0% | 22.0% | 29.1% | 2.0% | 7.4%  |
| Gf  |    |      | 0.0% | 7.4% | 14.5% | 7.4% | 7.4% | 13.6% | 31.6% | 9.1% | 9.1%  |
| Gm  |    |      |      | 2.0% | 10.7% | 2.0% | 1.0% | 7.4%  | 7.5%  | 9.1% | 7.4%  |
| Ns  |    |      |      |      | 9.1%  | 0.0% | 4.8% | 0.0%  | 13.6% | 4.2% | 12.3% |
| Nu  |    |      |      |      |       | 9.1% | 2.0% | 7.4%  | 0.0%  | 2.0% | 20.5% |
| Aic |    |      |      |      |       |      | 4.8% | 0.0%  | 19.0% | 7.5% | 14.5% |
| Aif |    |      |      |      |       |      |      | 4.2%  | 10.7% | 4.8% | 13.8% |
| Auc |    |      |      |      |       |      |      |       | 2.0%  | 3.8% | 5.3%  |
| Auf |    |      |      |      |       |      |      |       |       | 2.0% | 39.0% |
| Arw |    |      |      |      |       |      |      |       |       |      | 16.0% |
| Sf  |    |      |      |      |       |      |      |       |       |      |       |



### First Attempt at Correction



- MIL-HDB-217plus updates the table to correct reciprocals but simplifies conversions
  - Much of the differentiation between environments is lost
- This update is not recommend

|     | GB  | GF  | GM  | NS  | NU  | AIC | AIF | AUC | AUF | ARW | SF  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| GB  | Х   | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 1.1 |
| GF  | 2   | Х   | 0.4 | 0.6 | 0.3 | 0.6 | 0.4 | 0.2 | 0.1 | 0.2 | 2   |
| GM  | 5   | 2.5 | Х   | 1.4 | 0.7 | 1.4 | 0.9 | 0.6 | 0.3 | 0.5 | 5   |
| NS  | 3.3 | 1.7 | 0.7 | Х   | 0.5 | 1   | 0.7 | 0.4 | 0.2 | 0.3 | 3.3 |
| NU  | 10  | 3.3 | 1.4 | 2   | Х   | 2   | 1.4 | 0.9 | 0.5 | 0.7 | 10  |
| AIC | 3.3 | 1.7 | 0.7 | 1   | 0.5 | Х   | 0.7 | 0.4 | 0.2 | 0.3 | 3.3 |
| AIF | 5   | 2.5 | 1.1 | 1.4 | 0.7 | 1.4 | Х   | 0.6 | 0.4 | 0.5 | 5   |
| AUC | 10  | 5   | 1.7 | 2.5 | 1.1 | 2.5 | 1.7 | Х   | 0.6 | 0.8 | 10  |
| AUF | 10  | 10  | 3.3 | 5   | 2   | 5   | 2.5 | 1.7 | Х   | 1.4 | 10  |
| ARW | 10  | 5   | 2   | 3.3 | 1.4 | 3.3 | 2   | 1.3 | 0.7 | Х   | 10  |
| SF  | 0.9 | 0.5 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | Х   |



### **Proposed Solution**



- In any conversion pair, use the greater number and then actually use the reciprocal in the calculation or at least three significant figures
- The table below should be used
  - White shows numbers that match the original table
  - Green shows pairs that match consistently from the original table
  - Yellow shows numbers that have been updated
- NOTE: This table has not been officially endorsed by NASA! And is merely the opinion of the author

|     | Gb     | Gf     | Gm     | Ns     | Nu     | Aic    | Aif      | Auc      | Auf    | Arw    | Sf   |
|-----|--------|--------|--------|--------|--------|--------|----------|----------|--------|--------|------|
| Gb  |        | 0.5263 | 0.2174 | 0.3030 | 0.1389 | 0.3030 | 0.2      | 0.1220   | 0.0709 | 0.0980 | 1.2  |
| Gf  | 1.9    |        | 0.4    | 0.5556 | 0.2564 | 0.5556 | 0.3704   | 0.2273   | 0.1316 | 0.1818 | 2.2  |
| Gm  | 4.6    | 2.5    |        | 1.4    | 0.625  | 1.4    | 0.9091   | 0.5556   | 0.3226 | 0.4545 | 5.4  |
| Ns  | 3.3    | 1.8    | 0.7143 |        | 0.4545 | 1      | 0.666667 | 0.4      | 0.2273 | 0.3125 | 3.8  |
| Nu  | 7.2    | 3.9    | 1.6    | 2.2    |        | 2.2    | 1.4      | 0.833333 | 0.5    | 0.7143 | 8.3  |
| Aic | 3.3    | 1.8    | 0.7143 | 1      | 0.5    |        | 0.6667   | 0.4      | 0.2381 | 0.3226 | 3.9  |
| Aif | 5      | 2.7    | 1.1    | 1.5    | 0.7143 | 1.5    |          | 0.6250   | 0.3571 | 0.4762 | 5.8  |
| Auc | 8.2    | 4.4    | 1.8    | 2.5    | 1.2    | 2.5    | 1.6      |          | 0.5882 | 0.7692 | 9.5  |
| Auf | 14.1   | 7.6    | 3.1    | 4.4    | 2      | 4.2    | 2.8      | 1.7      |        | 1.4    | 16.4 |
| Arw | 10.2   | 5.5    | 2.2    | 3.2    | 1.4    | 3.1    | 2.1      | 1.3      | 0.7143 |        | 11.9 |
| Sf  | 0.8333 | 0.4545 | 0.1852 | 0.2632 | 0.1205 | 0.2564 | 0.1724   | 0.1053   | 0.0610 | 0.0840 |      |





- While this table is in "Military Electronic Design Handbook" it is also used to convert non-electronic component reliabilities
  - It must be clear that this is an assumption and the table is based on reliability analysis base on electronic components in different environments
- When converting failure rates between environments, the uncertainty in the failure rate typically increases
  - This progress is outlined in the RAM IX Training Summit report, "Impacts of Source Data Applicability on Epistemic Uncertainty for Launch Vehicle Reliability Models."





- Frank.hark@nasa.gov
- 256-961-9203